Do not require that unsafe fields lack drop glue
Instead, we adopt the position that introducing an `unsafe` field itself carries a safety invariant: that if you assign an invariant to that field weaker than what the field's destructor requires, you must ensure that field is in a droppable state in your destructor.
See:
- https://github.com/rust-lang/rfcs/pull/3458#discussion_r1971676100
- 502113897
Tracking Issue: #132922
Try to point of macro expansion from resolver and method errors if it involves macro var
In the case that a macro caller passes an identifier into a macro generating a path or method expression, point out that identifier in the context of the *macro* so it's a bit more clear how the macro is involved in causing the error.
r? ``````````@estebank`````````` or reassign
Instead, we adopt the position that introducing an `unsafe` field
itself carries a safety invariant: that if you assign an invariant
to that field weaker than what the field's destructor requires,
you must ensure that field is in a droppable state in your
destructor.
See:
- https://github.com/rust-lang/rfcs/pull/3458#discussion_r1971676100
- 502113897
Rollup of 8 pull requests
Successful merges:
- #134981 ( Explain that in paths generics can't be set on both the enum and the variant)
- #136698 (Replace i686-unknown-redox target with i586-unknown-redox)
- #136767 (improve host/cross target checking)
- #136829 ([rustdoc] Move line numbers into the `<code>` directly)
- #136875 (Rustc dev guide subtree update)
- #136900 (compiler: replace `ExternAbi::name` calls with formatters)
- #136913 (Put kobzol back on review rotation)
- #136915 (documentation fix: `f16` and `f128` are not double-precision)
r? `@ghost`
`@rustbot` modify labels: rollup
Various types can be used as method receivers, such as Rc<>, Box<> and
Arc<>. The arbitrary self types v2 work allows further types to be made
method receivers by implementing the Receiver trait.
With that in mind, it may come as a surprise to people when certain
common types do not implement Receiver and thus cannot be used as a
method receiver.
The RFC for arbitrary self types v2 therefore proposes emitting specific
lint hints for these cases:
* NonNull
* Weak
* Raw pointers
The code already emits a hint for this third case, in that it advises
folks that the `arbitrary_self_types_pointers` feature may meet their
need. This PR adds diagnostic hints for the Weak and NonNull cases.
The recently landed PR to adjust arbitrary self types was a bit
overenthusiastic, advising folks to use the new Receiver trait even
before it's been stabilized. Revert to the older wording of the lint in
such cases.
In this new version of Arbitrary Self Types, we no longer use the Deref trait
exclusively when working out which self types are valid. Instead, we follow a
chain of Receiver traits. This enables methods to be called on smart pointer
types which fundamentally cannot support Deref (for instance because they are
wrappers for pointers that don't follow Rust's aliasing rules).
This includes:
* Changes to tests appropriately
* New tests for:
* The basics of the feature
* Ensuring lifetime elision works properly
* Generic Receivers
* A copy of the method subst test enhanced with Receiver
This is really the heart of the 'arbitrary self types v2' feature, and
is the most critical commit in the current PR.
Subsequent commits are focused on:
* Detecting "shadowing" problems, where a smart pointer type can hide
methods in the pointee.
* Diagnostics and cleanup.
Naming: in this commit, the "Autoderef" type is modified so that it no
longer solely focuses on the "Deref" trait, but can now consider the
"Receiver" trait instead. Should it be renamed, to something like
"TraitFollower"? This was considered, but rejected, because
* even in the Receiver case, it still considers built-in derefs
* the name Autoderef is short and snappy.
Stabilize `extended_varargs_abi_support`
I think that is everything? If there is any documentation regarding `extern` and/or varargs to correct, let me know, some quick greps suggest that there might be none.
Tracking issue: https://github.com/rust-lang/rust/issues/100189
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly
This is consistent with all other diagnostics I could find containing
features and enables the use of `DiagSymbolList` for generalizing
diagnostics for unstable library features to multiple features.
The RFC for arbitrary self types v2 declares that we should reject
"generic" self types. This commit does so.
The definition of "generic" was unclear in the RFC, but has been
explored in
https://github.com/rust-lang/rust/issues/129147
and the conclusion is that "generic" means any `self` type which
is a type parameter defined on the method itself, or references
to such a type.
This approach was chosen because other definitions of "generic"
don't work. Specifically,
* we can't filter out generic type _arguments_, because that would
filter out Rc<Self> and all the other types of smart pointer
we want to support;
* we can't filter out all type params, because Self itself is a
type param, and because existing Rust code depends on other
type params declared on the type (as opposed to the method).
This PR decides to make a new error code for this case, instead of
reusing the existing E0307 error. This makes the code a
bit more complex, but it seems we have an opportunity to provide
specific diagnostics for this case so we should do so.
This PR filters out generic self types whether or not the
'arbitrary self types' feature is enabled. However, it's believed
that it can't have any effect on code which uses stable Rust, since
there are no stable traits which can be used to indicate a valid
generic receiver type, and thus it would have been impossible to
write code which could trigger this new error case.
It is however possible that this could break existing code which
uses either of the unstable `arbitrary_self_types` or
`receiver_trait` features. This breakage is intentional; as
we move arbitrary self types towards stabilization we don't want
to continue to support generic such types.
This PR adds lots of extra tests to arbitrary-self-from-method-substs.
Most of these are ways to trigger a "type mismatch" error which
9b82580c73/compiler/rustc_hir_typeck/src/method/confirm.rs (L519)
hopes can be minimized by filtering out generics in this way.
We remove a FIXME from confirm.rs suggesting that we make this change.
It's still possible to cause type mismatch errors, and a subsequent
PR may be able to improve diagnostics in this area, but it's harder
to cause these errors without contrived uses of the turbofish.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Implement Return Type Notation (RTN)'s path form in where clauses
Implement return type notation (RTN) in path position for where clauses. We already had RTN in associated type position ([e.g.](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=627a4fb8e2cb334863fbd08ed3722c09)), but per [the RFC](https://rust-lang.github.io/rfcs/3654-return-type-notation.html#where-rtn-can-be-used-for-now):
> As a standalone type, RTN can only be used as the Self type of a where-clause [...]
Specifically, in order to enable code like:
```rust
trait Foo {
fn bar() -> impl Sized;
}
fn is_send(_: impl Send) {}
fn test<T>()
where
T: Foo,
T::bar(..): Send,
{
is_send(T::bar());
}
```
* In the resolver, when we see a `TyKind::Path` whose final segment is `GenericArgs::ParenthesizedElided` (i.e. `(..)`), resolve that path in the *value* namespace, since we're looking for a method.
* When lowering where clauses in HIR lowering, we first try to intercept an RTN self type via `lower_ty_maybe_return_type_notation`. If we find an RTN type, we lower it manually in a way that respects its higher-ranked-ness (see below) and resolves to the corresponding RPITIT. Anywhere else, we'll emit the same "return type notation not allowed in this position yet" error we do when writing RTN in every other position.
* In `resolve_bound_vars`, we add some special treatment for RTN types in where clauses. Specifically, we need to add new lifetime variables to our binders for the early- and late-bound vars we encounter on the method. This implements the higher-ranked desugaring [laid out in the RFC](https://rust-lang.github.io/rfcs/3654-return-type-notation.html#converting-to-higher-ranked-trait-bounds).
This PR also adds a bunch of tests, mostly negative ones (testing error messages).
In a follow-up PR, I'm going to mark RTN as no longer incomplete, since this PR basically finishes the impl surface that we should initially stabilize, and the RFC was accepted.
cc [RFC 3654](https://github.com/rust-lang/rfcs/pull/3654) and https://github.com/rust-lang/rust/issues/109417
Correct outdated object size limit
The comment here about 48 bit addresses being enough was written in 2016 but was made incorrect in 2019 by 5-level paging, and then persisted for another 5 years before being noticed and corrected.
The bolding of the "exclusive" part is merely to call attention to something I missed when reading it and doublechecking the math.
try-job: i686-msvc
try-job: test-various