interpret: adjust vtable validity check for higher-ranked types
## What
Transmuting between trait objects where a generic argument or associated type only differs in bound regions (not bound at or above the trait object's binder) is now UB. For example
* transmuting between `&dyn Trait<for<'a> fn(&'a u8)>` and `&dyn Trait<fn(&'static u8)>` is UB.
* transmuting between `&dyn Trait<Assoc = for<'a> fn(&'a u8)>` and `&dyn Trait<Assoc = fn(&'static u8)>` is UB.
* transmuting between `&dyn Trait<for<'a> fn(&'a u8) -> (&'a u8, &'static u8)>` and `&dyn Trait<for<'a> fn(&'a u8) -> (&'static u8, &'a u8)>` is UB.
Transmuting between subtypes (in either direction) is still allowed, which means that bound regions that are bound at or above the trait object's binder can still be changed:
* transmuting between `&dyn for<'a> Trait<fn(&'a u8)>` and `&dyn for Trait<fn(&'static u8)>` is fine.
* transmuting between `&dyn for<'a> Trait<dyn Trait<fn(&'a u8)>>` and `&dyn for Trait<dyn Trait<fn(&'static u8)>>` is fine.
## Why
Very similar to https://github.com/rust-lang/rust/issues/120217 and https://github.com/rust-lang/rust/issues/120222, changing a trait object's generic argument to a type that only differs in bound regions can still affect the vtable layout and lead to segfaults at runtime (for an example see `src/tools/miri/tests/fail/validity/dyn-transmute-inner-binder.rs`).
Since we already already require that the trait object predicates must be equal modulo bound regions, it is only natural to extend this check to also require type equality considering bound regions.
However, it also makes sense to allow transmutes between a type and a subtype thereof. For example `&dyn for<'a> Trait<&'a u8>` is a subtype of `&dyn Trait<&'static ()>` and they are guaranteed to have the same vtable, so it makes sense to allow this transmute. So that's why bound lifetimes that are bound to the trait object itself are treated as free lifetime for the purpose of this check.
Note that codegen already relies on the property that subtyping cannot change the the vtable and this is asserted here (note the leak check): 251206c27b/compiler/rustc_codegen_ssa/src/base.rs (L106-L153)
Furthermore, we allow some pointer-to-pointer casts like `*const dyn for<'a> Trait<&'a u8>` to `*const Wrapper<dyn Trait<&'static u8>>` that instantiate the trait object binder and are currently lowered to a single pointer-to-pointer cast in MIR (`CastKind::PtrToPtr`) and *not* an unsizing coercion (`CastKind::PointerCoercion(Unsize)`), so the current MIR lowering of these would be UB if we didn't allow subtyping transmutes.
---
fixes https://github.com/rust-lang/rust/issues/135230
cc `@rust-lang/opsem`
r? `@compiler-errors` for the implementation
Continuing the work started in #136466.
Every method gains a `hir_` prefix, though for the ones that already
have a `par_` or `try_par_` prefix I added the `hir_` after that.
valtree performance tuning
Summary: This PR makes type checking of code with many type-level constants faster.
After https://github.com/rust-lang/rust/pull/136180 was merged, we observed a small perf regression (https://github.com/rust-lang/rust/pull/136318#issuecomment-2635562821). This happened because that PR introduced additional copies in the fast reject code path for consts, which is very hot for certain crates: 6c1d960d88/compiler/rustc_type_ir/src/fast_reject.rs (L486-L487)
This PR improves the performance again by properly interning the valtrees so that copying and comparing them becomes faster. This will become especially useful with `feature(adt_const_params)`, so the fast reject code doesn't have to do a deep compare of the valtrees.
Note that we can't just compare the interned consts themselves in the fast reject, because sometimes `'static` lifetimes in the type are be replaced with inference variables (due to canonicalization) on one side but not the other.
A less invasive alternative that I considered is simply avoiding copies introduced by https://github.com/rust-lang/rust/pull/136180 and comparing the valtrees it in-place (see commit: 9e91e50ac5 / perf results: https://github.com/rust-lang/rust/pull/136593#issuecomment-2642303245), however that was still measurably slower than interning.
There are some minor regressions in secondary benchmarks: These happen due to changes in memory allocations and seem acceptable to me. The crates that make heavy use of valtrees show no significant changes in memory usage.
Rename rustc_middle::Ty::is_unsafe_ptr to is_raw_ptr
The wording unsafe pointer is less common and not mentioned in a lot of places, instead this is usually called a "raw pointer". For the sake of uniformity, we rename this method.
This came up during the review of
https://github.com/rust-lang/rust/pull/134424.
r? `@Noratrieb`
compiler: die immediately instead of handling unknown target codegen
We cannot produce anything useful if asked to compile unknown targets. We should handle the error immediately at the point of discovery instead of propagating it upward, and preferably in the simplest way: Die.
This allows cleaning up our "error-handling" spread across 5 crates.
We cannot produce anything useful if asked to compile unknown targets.
We should handle the error immediately at the point of discovery instead
of propagating it upward, and preferably in the simplest way: Die.
This allows cleaning up our "error-handling" spread across 5 crates.
The wording unsafe pointer is less common and not mentioned in a lot of
places, instead this is usually called a "raw pointer". For the sake of
uniformity, we rename this method.
This came up during the review of
https://github.com/rust-lang/rust/pull/134424.
Pretty print pattern type values with transmute if they don't satisfy their pattern
Instead of printing `0_u32 is 1..`, we now print the default fallback rendering that we also use for invalid bools, chars, ...: `{transmute(0x00000000): (u32) is 1..=}`.
These cases can occur in mir dumps when const prop propagates a constant across a safety check that would prevent the actually UB value from existing. That's fine though, as it's dead code and we always need to allow UB in dead code.
follow-up to https://github.com/rust-lang/rust/pull/136176
cc ``@compiler-errors`` ``@scottmcm``
r? ``@RalfJung`` because of the interpreter changes
#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Use the type-level constant value `ty::Value` where needed
**Follow-up to #136180**
### Summary
This PR refactors functions to accept a single type-level constant value `ty::Value` instead of separate `ty::ValTree` and `ty::Ty` parameters:
- `valtree_to_const_value`: now takes `ty::Value`
- `pretty_print_const_valtree`: now takes `ty::Value`
- Uses `pretty_print_const_valtree` for formatting valtrees when `visit_const_operand`
- Moves `try_to_raw_bytes` from `ty::Valtree` to `ty::Value`
---
r? ``@lukas-code`` ``@oli-obk``
Remove hook calling via `TyCtxtAt`.
All hooks receive a `TyCtxtAt` argument.
Currently hooks can be called through `TyCtxtAt` or `TyCtxt`. In the latter case, a `TyCtxtAt` is constructed with a dummy span and passed to the hook.
However, in practice hooks are never called through `TyCtxtAt`, and always receive a dummy span. (I confirmed this via code inspection, and double-checked it by temporarily making the `TyCtxtAt` code path panic and running all the tests.)
This commit removes all the `TyCtxtAt` machinery for hooks. All hooks now receive `TyCtxt` instead of `TyCtxtAt`. There are two existing hooks that use `TyCtxtAt::span`: `const_caller_location_provider` and `try_destructure_mir_constant_for_user_output`. For both hooks the span is always a dummy span, probably unintentionally. This dummy span use is now explicit. If a non-dummy span is needed for these two hooks it would be easy to add it as an extra argument because hooks are less constrained than queries.
r? `@oli-obk`
All hooks receive a `TyCtxtAt` argument.
Currently hooks can be called through `TyCtxtAt` or `TyCtxt`. In the
latter case, a `TyCtxtAt` is constructed with a dummy span and passed to
the hook.
However, in practice hooks are never called through `TyCtxtAt`, and
always receive a dummy span. (I confirmed this via code inspection, and
double-checked it by temporarily making the `TyCtxtAt` code path panic
and running all the tests.)
This commit removes all the `TyCtxtAt` machinery for hooks. All hooks
now receive `TyCtxt` instead of `TyCtxtAt`. There are two existing hooks
that use `TyCtxtAt::span`: `const_caller_location_provider` and
`try_destructure_mir_constant_for_user_output`. For both hooks the span
is always a dummy span, probably unintentionally. This dummy span use is
now explicit. If a non-dummy span is needed for these two hooks it would
be easy to add it as an extra argument because hooks are less
constrained than queries.
Implement MIR lowering for unsafe binders
This is the final bit of the unsafe binders puzzle. It implements MIR, CTFE, and codegen for unsafe binders, and enforces that (for now) they are `Copy`. Later on, I'll introduce a new trait that relaxes this requirement to being "is `Copy` or `ManuallyDrop<T>`" which more closely models how we treat union fields.
Namely, wrapping unsafe binders is now `Rvalue::WrapUnsafeBinder`, which acts much like an `Rvalue::Aggregate`. Unwrapping unsafe binders are implemented as a MIR projection `ProjectionElem::UnwrapUnsafeBinder`, which acts much like `ProjectionElem::Field`.
Tracking:
- https://github.com/rust-lang/rust/issues/130516
Insert null checks for pointer dereferences when debug assertions are enabled
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a `MirPass`.
This inserts checks in the same places as the `CheckAlignment` pass and additionally
also inserts checks for `Borrows`, so code like
```rust
let ptr: *const u32 = std::ptr::null();
let val: &u32 = unsafe { &*ptr };
```
will have a check inserted on dereference. This is done because null references
are UB. The alignment check doesn't cover these places, because in `&(*ptr).field`,
the exact requirement is that the final reference must be aligned. This is something to
consider further enhancements of the alignment check.
For now this is implemented as a separate `MirPass`, to make it easy to disable
this check if necessary.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
r? `@saethlin`
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a MirPass.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
Fix deduplication mismatches in vtables leading to upcasting unsoundness
We currently have two cases where subtleties in supertraits can trigger disagreements in the vtable layout, e.g. leading to a different vtable layout being accessed at a callsite compared to what was prepared during unsizing. Namely:
### #135315
In this example, we were not normalizing supertraits when preparing vtables. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Identity {
type Selff;
}
impl<Selff> Identity for Selff {
type Selff = Selff;
}
trait Middle<T>: Supertrait<()> + Supertrait<T> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T> Middle<T> for () {}
trait Trait: Middle<<() as Identity>::Selff> {}
impl Trait for () {}
fn main() {
(&() as &dyn Trait as &dyn Middle<()>).say_hello(&0);
}
```
When we prepare `dyn Trait`, we see a supertrait of `Middle<<() as Identity>::Selff>`, which itself has two supertraits `Supertrait<()>` and `Supertrait<<() as Identity>::Selff>`. These two supertraits are identical, but they are not duplicated because we were using structural equality and *not* considering normalization. This leads to a vtable layout with two trait pointers.
When we upcast to `dyn Middle<()>`, those two supertraits are now the same, leading to a vtable layout with only one trait pointer. This leads to an offset error, and we call the wrong method.
### #135316
This one is a bit more interesting, and is the bulk of the changes in this PR. It's a bit similar, except it uses binder equality instead of normalization to make the compiler get confused about two vtable layouts. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Trait<T, U>: Supertrait<T> + Supertrait<U> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T, U> Trait<T, U> for () {}
fn main() {
(&() as &'static dyn for<'a> Trait<&'static (), &'a ()>
as &'static dyn Trait<&'static (), &'static ()>)
.say_hello(&0);
}
```
When we prepare the vtable for `dyn for<'a> Trait<&'static (), &'a ()>`, we currently consider the PolyTraitRef of the vtable as the key for a supertrait. This leads two two supertraits -- `Supertrait<&'static ()>` and `for<'a> Supertrait<&'a ()>`.
However, we can upcast[^up] without offsetting the vtable from `dyn for<'a> Trait<&'static (), &'a ()>` to `dyn Trait<&'static (), &'static ()>`. This is just instantiating the principal trait ref for a specific `'a = 'static`. However, when considering those supertraits, we now have only one distinct supertrait -- `Supertrait<&'static ()>` (which is deduplicated since there are two supertraits with the same substitutions). This leads to similar offsetting issues, leading to the wrong method being called.
[^up]: I say upcast but this is a cast that is allowed on stable, since it's not changing the vtable at all, just instantiating the binder of the principal trait ref for some lifetime.
The solution here is to recognize that a vtable isn't really meaningfully higher ranked, and to just treat a vtable as corresponding to a `TraitRef` so we can do this deduplication more faithfully. That is to say, the vtable for `dyn for<'a> Tr<'a>` and `dyn Tr<'x>` are always identical, since they both would correspond to a set of free regions on an impl... Do note that `Tr<for<'a> fn(&'a ())>` and `Tr<fn(&'static ())>` are still distinct.
----
There's a bit more that can be cleaned up. In codegen, we can stop using `PolyExistentialTraitRef` basically everywhere. We can also fix SMIR to stop storing `PolyExistentialTraitRef` in its vtable allocations.
As for testing, it's difficult to actually turn this into something that can be tested with `rustc_dump_vtable`, since having multiple supertraits that are identical is a recipe for ambiguity errors. Maybe someone else is more creative with getting that attr to work, since the tests I added being run-pass tests is a bit unsatisfying. Miri also doesn't help here, since it doesn't really generate vtables that are offset by an index in the same way as codegen.
r? `@lcnr` for the vibe check? Or reassign, idk. Maybe let's talk about whether this makes sense.
<sup>(I guess an alternative would also be to not do any deduplication of vtable supertraits (or only a really conservative subset) rather than trying to normalize and deduplicate more faithfully here. Not sure if that works and is sufficient tho.)</sup>
cc `@steffahn` -- ty for the minimizations
cc `@WaffleLapkin` -- since you're overseeing the feature stabilization :3
Fixes#135315Fixes#135316
miri: optimize zeroed alloc
When allocating zero-initialized memory in MIR interpretation, rustc allocates zeroed memory, marks it as initialized and then re-zeroes it. Remove the last step.
I don't expect this to have much of an effect on performance normally, but in my case in which I'm creating a large allocation via mmap it gets in the way.