It bugs me when variables of type `Ident` are called `name`. It leads to
silly things like `name.name`. `Ident` variables should be called
`ident`, and `name` should be used for variables of type `Symbol`.
This commit improves things by by doing `s/name/ident/` on a bunch of
`Ident` variables. Not all of them, but a decent chunk.
`ast::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
`Trait`, `TraitAlias`, `MacroDef`, `Delegation`.
- It's always empty for these item kinds: `Use`, `ForeignMod`,
`GlobalAsm`, `Impl`, `MacCall`, `DelegationMac`.
There is a similar story for `AssocItemKind` and `ForeignItemKind`.
Some sites that handle items check for an empty ident, some don't. This
is a very C-like way of doing things, but this is Rust, we have sum
types, we can do this properly and never forget to check for the
exceptional case and never YOLO possibly empty identifiers (or possibly
dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- `ast::Item` got 8 bytes bigger. This could be avoided by boxing the
fields within some of the `ast::ItemKind` variants (specifically:
`Struct`, `Union`, `Enum`). I might do that in a follow-up; this
commit is big enough already.
- For the visitors: `FnKind` no longer needs an `ident` field because
the `Fn` within how has one.
- In the parser, the `ItemInfo` typedef is no longer needed. It was used
in various places to return an `Ident` alongside an `ItemKind`, but
now the `Ident` (if present) is within the `ItemKind`.
- In a few places I renamed identifier variables called `name` (or
`foo_name`) as `ident` (or `foo_ident`), to better match the type, and
because `name` is normally used for `Symbol`s. It's confusing to see
something like `foo_name.name`.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
This would have avoided a bug in https://github.com/rust-lang/rust/pull/104860.
In practice this shouldn't matter since nothing uses the query other than the `dead_code` lint,
but this isn't documented as an internal-only query so it seems nice for it to be accurate.
I think for `dead_code` it doesn't matter because the relevant code is generated by `rustc_builtin_macros` and isn't linted.
There is code for converting `Attribute` (syntactic) to `MetaItem`
(semantic). There is also code for the reverse direction. The reverse
direction isn't really necessary; it's currently only used when
generating attributes, e.g. in `derive` code.
This commit adds some new functions for creating `Attributes`s directly,
without involving `MetaItem`s: `mk_attr_word`, `mk_attr_name_value_str`,
`mk_attr_nested_word`, and
`ExtCtxt::attr_{word,name_value_str,nested_word}`.
These new methods replace the old functions for creating `Attribute`s:
`mk_attr_inner`, `mk_attr_outer`, and `ExtCtxt::attribute`. Those
functions took `MetaItem`s as input, and relied on many other functions
that created `MetaItems`, which are also removed: `mk_name_value_item`,
`mk_list_item`, `mk_word_item`, `mk_nested_word_item`,
`{MetaItem,MetaItemKind,NestedMetaItem}::token_trees`,
`MetaItemKind::attr_args`, `MetaItemLit::{from_lit_kind,to_token}`,
`ExtCtxt::meta_word`.
Overall this cuts more than 100 lines of code and makes thing simpler.
In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
The produced library would get a main shim too which conflicts with the
main shim of the executable linking the library.
```
$ cat > main1.rs <<EOF
fn main() {}
pub fn bar() {}
EOF
$ cat > main2.rs <<EOF
extern crate main1;
fn main() {
main1::bar();
}
EOF
$ rustc --crate-type bin --crate-type lib main1.rs
$ rustc -L. main2.rs
error: linking with `cc` failed: exit status: 1
[...]
= note: /usr/bin/ld: /tmp/crate_bin_lib/libmain1.rlib(main1.main1.707747aa-cgu.0.rcgu.o): in function `main':
main1.707747aa-cgu.0:(.text.main+0x0): multiple definition of `main'; main2.main2.02a148fe-cgu.0.rcgu.o:main2.02a148fe-cgu.0:(.text.main+0x0): first defined here
collect2: error: ld returned 1 exit status
```
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Crate root is sufficiently different from `mod` items, at least at syntactic level.
Also remove customization point for "`mod` item or crate root" from AST visitors.