Support raw-dylib link kind on ELF
raw-dylib is a link kind that allows rustc to link against a library without having any library files present.
This currently only exists on Windows. rustc will take all the symbols from raw-dylib link blocks and put them in an import library, where they can then be resolved by the linker.
While import libraries don't exist on ELF, it would still be convenient to have this same functionality. Not having the libraries present at build-time can be convenient for several reasons, especially cross-compilation. With raw-dylib, code linking against a library can be cross-compiled without needing to have these libraries available on the build machine. If the libc crate makes use of this, it would allow cross-compilation without having any libc available on the build machine. This is not yet possible with this implementation, at least against libc's like glibc that use symbol versioning. The raw-dylib kind could be extended with support for symbol versioning in the future.
This implementation is very experimental and I have not tested it very well. I have tested it for a toy example and the lz4-sys crate, where it was able to successfully link a binary despite not having a corresponding library at build-time.
I was inspired by Björn's comments in https://internals.rust-lang.org/t/bundle-zig-cc-in-rustup-by-default/22096/27
Tracking issue: #135694
r? bjorn3
try-job: aarch64-apple
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
raw-dylib is a link kind that allows rustc to link against a library
without having any library files present.
This currently only exists on Windows. rustc will take all the symbols
from raw-dylib link blocks and put them in an import library, where they
can then be resolved by the linker.
While import libraries don't exist on ELF, it would still be convenient
to have this same functionality. Not having the libraries present at
build-time can be convenient for several reasons, especially
cross-compilation. With raw-dylib, code linking against a library can be
cross-compiled without needing to have these libraries available on the
build machine. If the libc crate makes use of this, it would allow
cross-compilation without having any libc available on the build
machine. This is not yet possible with this implementation, at least
against libc's like glibc that use symbol versioning.
The raw-dylib kind could be extended with support for symbol versioning
in the future.
This implementation is very experimental and I have not tested it very
well. I have tested it for a toy example and the lz4-sys crate, where it
was able to successfully link a binary despite not having a
corresponding library at build-time.
add more `s390x` target features
Closes#88937
tracking issue: https://github.com/rust-lang/rust/issues/130869
The target feature names are, right now, just the llvm target feature names. These mostly line up well with the names of [Facility Indications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) names. The linux kernel (and `/proc/cpuinfo`) uses shorter, more cryptic names. (e.g. "vector" is `vx`). We can deviate from the llvm names, but the CPU vendor (IBM) does not appear to use e.g. `vx` for what they call `vector`.
There are a number of implied target features between the vector facilities (based on the [Facility Indications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) table):
- 129 The vector facility for z/Architecture is installed in the z/Architecture architectural mode.
- 134 The vector packed decimal facility is installed in the z/Architecture architectural mode. When bit 134 is one, bit 129 is also one.
- 135 The vector enhancements facility 1 is installed in the z/Architecture architectural mode. When bit 135 is one, bit 129 is also one.
- 148 The vector-enhancements facility 2 is installed in the z/Architecture architectural mode. When bit 148 is one, bits 129 and 135 are also one.
- 152 The vector-packed-decimal-enhancement facility 1 is installed in the z/Architecture architectural mode. When bit 152 is one, bits 129 and 134 are also one.
- 165 The neural-network-processing-assist facility is installed in the z/Architecture architectural mode. When bit 165 is one, bit 129 is also one.
- 192 The vector-packed-decimal-enhancement facility 2 is installed in the z/Architecture architectural mode. When bit 192 is one, bits 129, 134, and 152 are also one.
The remaining facilities do not have any implied target features (that we provide):
- 45 The distinct-operands, fast-BCR-serialization, high-word, and population-count facilities, the interlocked-access facility 1, and the load/store-oncondition facility 1 are installed in the z/Architecture architectural mode.
- 73 The transactional-execution facility is installed in the z/Architecture architectural mode. Bit 49 is one when bit 73 is one.
- 133 The guarded-storage facility is installed in the z/Architecture architectural mode.
- 150 The enhanced-sort facility is installed in the z/Architecture architectural mode.
- 151 The DEFLATE-conversion facility is installed in the z/Architecture architectural mode.
The added target features are those that have ISA implications, can be queried at runtime, and have LLVM support. LLVM [defines more target features](d49a2d2bc9/llvm/lib/Target/SystemZ/SystemZFeatures.td), but I'm not sure those are useful. They can always be added later, and can already be set globally using `-Ctarget-feature`.
I'll also update the `is_s390x_feature_supported` macro (added in https://github.com/rust-lang/stdarch/pull/1699, not yet on nightly, that needs an stdarch sync) to include these target features.
``@Amanieu`` you had some reservations about the `"vector"` target feature name. It does appear to be the most "official" name we have. On the one hand the name is very generic, and some of the other names are rather long. For the `neural-network-processing-assist` even LLVM thought that was a bit much and shortened it to `nnp-assist`. Also for `vector-packed-decimal-enhancement facility 1` the llvm naming is inconsistent. On the other hand, the cpuinfo names are very cryptic, and aren't found in the IBM documentation.
r? ``@Amanieu``
cc ``@uweigand`` ``@taiki-e``
The target feature names are, right now, based on the llvm target feature names. These mostly line up well with the names of [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) names. The linux kernel uses shorter, more cryptic names. (e.g. "vector" is `vx`). We can deviate from the llvm names, but the CPU vendor (IBM) does not appear to use e.g. `vx` for what they call `vector`.
There are a number of implied target features between the vector facilities (based on the [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) table):
- 129 The vector facility for z/Architecture is installed in the z/Architecture architectural mode.
- 134 The vector packed decimal facility is installed in the z/Architecture architectural mode. When bit 134 is one, bit 129 is also one.
- 135 The vector enhancements facility 1 is installed in the z/Architecture architectural mode. When bit 135 is one, bit 129 is also one.
- 148 The vector-enhancements facility 2 is installed in the z/Architecture architectural mode. When bit 148 is one, bits 129 and 135 are also one.
- 152 The vector-packed-decimal-enhancement facility 1 is installed in the z/Architecture architectural mode. When bit 152 is one, bits 129 and 134 are also one.
- 165 The neural-network-processing-assist facility is installed in the z/Architecture architectural mode. When bit 165 is one, bit 129 is also one.
- 192 The vector-packed-decimal-enhancement facility 2 is installed in the z/Architecture architectural mode. When bit 192 is one, bits 129, 134, and 152 are also one.
And then there are a number of facilities without any implied target features
- 45 The distinct-operands, fast-BCR-serialization, high-word, and population-count facilities, the interlocked-access facility 1, and the load/store-oncondition facility 1 are installed in the z/Architecture architectural mode.
- 73 The transactional-execution facility is installed in the z/Architecture architectural mode. Bit 49 is one when bit 73 is one.
- 133 The guarded-storage facility is installed in the z/Architecture architectural mode.
- 150 The enhanced-sort facility is installed in the z/Architecture architectural mode.
- 151 The DEFLATE-conversion facility is installed in the z/Architecture architectural mode.
The added target features are those that have ISA implications, can be queried at runtime, and have LLVM support. LLVM [defines more target features](d49a2d2bc9/llvm/lib/Target/SystemZ/SystemZFeatures.td), but I'm not sure those are useful. They can always be added later, and can already be set globally using `-Ctarget-feature`.
Make x86 QNX target name consistent with other Rust targets
Rename target to be consistent with other Rust targets: Use `i686` instead of `i586`
See also
- #136495
- #109173
CC: `@jonathanpallant` `@japaric` `@gh-tr` `@samkearney`
Workaround Cranelift not yet properly supporting vectors smaller than 128bit
While it would technically be possible to workaround this in cg_clif, it quickly becomes very messy and would likely cause correctness issues. Working around it in rustc instead is much simper and won't have any negative impact for code running on stable as vectors smaller than 128bit can only be made on nightly using core::simd or #[repr(simd)].
Do not ignore uninhabited types for function-call ABI purposes. (Remove BackendRepr::Uninhabited)
Accepted MCP: https://github.com/rust-lang/compiler-team/issues/832Fixes#135802
Do not consider the inhabitedness of a type for function call ABI purposes.
* Remove the [`rustc_abi::BackendRepr::Uninhabited`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/enum.BackendRepr.html) variant
* Instead calculate the `BackendRepr` of uninhabited types "normally" (as though they were not uninhabited "at the top level", but still considering inhabitedness of variants to determine enum layout, etc)
* Add an `uninhabited: bool` field to [`rustc_abi::LayoutData`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/struct.LayoutData.html) so inhabitedness of a `LayoutData` can still be queried when necessary (e.g. when determining if an enum variant needs a tag value allocated to it).
This should not affect type layouts (size/align/field offset); this should only affect function call ABI, and only of uninhabited types.
cc ``@RalfJung``
infer linker flavor by linker name if it's sufficiently specific
Fix: `rustc` does not infer `llvm-bitcode-linker` uses `llbc` linker flavor if targeting `nvptx64-nvidia-cuda`.
Create a generic AVR target: avr-none
This commit removes the `avr-unknown-gnu-atmega328` target and replaces it with a more generic `avr-none` variant that must be specialized using `-C target-cpu` (e.g. `-C target-cpu=atmega328p`).
Seizing the day, I'm adding myself as the maintainer of this target - I've been already fixing the bugs anyway, might as well make it official 🙂
Related discussions:
- https://github.com/rust-lang/rust/pull/131171
- https://github.com/rust-lang/compiler-team/issues/800
try-job: x86_64-gnu-debug
While it would technically be possible to workaround this in cg_clif, it
quickly becomes very messy and would likely cause correctness issues.
Working around it in rustc instead is much simper and won't have any
negative impact for code running on stable as vectors smaller than
128bit can only be made on nightly using core::simd or #[repr(simd)].
This commit removes the `avr-unknown-gnu-atmega328` target and replaces
it with a more generic `avr-none` variant that must be specialized with
the `-C target-cpu` flag (e.g. `-C target-cpu=atmega328p`).
Remove SSE ABI from i586-pc-windows-msvc
As an i586 target, it should not have SSE. This caused the following warning to be emitted:
```
warning: target feature `sse2` must be enabled to ensure that the ABI of the current target can be implemented correctly
|
= note: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116344 <https://github.com/rust-lang/rust/issues/116344>
warning: 1 warning emitted
```
see #116344.
r? RalfJung
As an i586 target, it should not have SSE. This caused the following
warning to be emitted:
```
warning: target feature `sse2` must be enabled to ensure that the ABI of the current target can be implemented correctly
|
= note: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116344 <https://github.com/rust-lang/rust/issues/116344>
warning: 1 warning emitted
```
Load all builtin targets at once instead of one by one in check-cfg
This PR adds a method on `rustc_target::Target` to load all the builtin targets at once, and then uses that method when constructing the `target_*` values in check-cfg instead of load loading each target one by one by their name, which requires a lookup and was more of a hack anyway.
This may give us some performance improvements as we won't need to do the lookup for the _currently_ 287 targets we have.
nvptx64: update default alignment to match LLVM 21
This changed in llvm/llvm-project@91cb8f5d32. The commit itself is mostly about some intrinsic instructions, but as an aside it also mentions something about addrspace for tensor memory, which I believe is what this string is telling us.
`@rustbot` label: +llvm-main
compiler: give `ExternAbi` truly stable `Hash` and `Ord`
Currently, `ExternAbi` has a bunch of code to handle the reality that, as an enum, adding more variants to it will risk it hashing differently. It forces all of those variants to be added in a fixed order, except this means that the order of the variants doesn't correspond to any logical order except "historical accident". This is all to avoid having to rebless two tests. Perhaps there were more, once upon a time? But then we invented normalization in our test suite to handle exactly this sort of issue in a more general way.
There are two options here:
- Get rid of all the logical overhead and shrug, embracing blessing a couple of tests sometimes
- Change `ExternAbi` to have an ordering and hash that doesn't depend on the number of variants
As `ExternAbi` is essentially a strongly-typed string, and thus no two strings can be identical, this implements the second of the two by hand-implementing `Ord` and `Hash` to make the hashing and comparison based on the string! This will diff the current hashes, but they will diff no more after this.
i686-linux-android: increase CPU baseline to Pentium 4 (without an actual change
As per ``@maurer's`` [comment](https://github.com/rust-lang/rust/issues/136495#issuecomment-2648743078), this shouldn't actually change anything since we anyway add a bunch of extensions that bump things up way beyond Pentium 4. But Pentium 4 is consistent with the other i686 targets and I don't know enough about the exact sequence of CPU generations to be confident with more than this. ;)
compiler: die immediately instead of handling unknown target codegen
We cannot produce anything useful if asked to compile unknown targets. We should handle the error immediately at the point of discovery instead of propagating it upward, and preferably in the simplest way: Die.
This allows cleaning up our "error-handling" spread across 5 crates.
show supported register classes in error message
a simple diagnostic change that shows the supported register classes when an invalid one is found.
This information can be hard to find (especially for unstable targets), and this message now gives at least something to try or search for. I've followed the pattern for invalid clobber ABIs.
`@rustbot` label +A-inline-assembly
compiler: gate `extern "{abi}"` in ast_lowering
I don't believe low-level crates like `rustc_abi` should have to know or care about higher-level concerns like whether the ABI string is stable for users. These implementation details can be made less open to public inspection. This way the code that governs stability is near the code that enforces stability, and compiled together.
It also abstracts away certain error messages instead of constantly repeating them.
A few error messages are simply deleted outright, instead of made uniform, because they are either too dated to be useful or redundant with other diagnostic improvements we could make. These can be pursued in followups: my first concern was making sure there wasn't unnecessary diagnostics-related code in `rustc_abi`, which is not well-positioned to understand what kind of errors are going to be generated based on how it is used.
r? ``@ghost``
We cannot produce anything useful if asked to compile unknown targets.
We should handle the error immediately at the point of discovery instead
of propagating it upward, and preferably in the simplest way: Die.
This allows cleaning up our "error-handling" spread across 5 crates.