gvn: Invalid dereferences for all non-local mutations
Fixes#132353.
This PR removes the computation value by traversing SSA locals through `for_each_assignment_mut`.
Because the `for_each_assignment_mut` traversal skips statements which have side effects, such as dereference assignments, the computation may be unsound. Instead of `for_each_assignment_mut`, we compute values by traversing in reverse postorder.
Because we compute and use the symbolic representation of values on the fly, I invalidate all old values when encountering a dereference assignment. The current approach does not prevent the optimization of a clone to a copy.
In the future, we may add an alias model, or dominance information for dereference assignments, or SSA form to help GVN.
r? cjgillot
cc `@jieyouxu` #132356
cc `@RalfJung` #133474
Misc query tweaks
Remove some redundant work around `cache_on_disk` and `ensure_ok`, since `Result<(), ErrorGuaranteed>` queries don't need to cache or recompute their "value" if they are only used for their result.
`for_each_assignment_mut` can skip assignment statements with side effects,
which can result in some assignment statements retrieving outdated value.
For example, it may skip a dereference assignment statement.
Various local trait item iteration cleanups
Adding a trait impl for `Foo` unconditionally affected all queries that are interested in a completely independent trait `Bar`. Perf has no effect on this. We probably don't have a good perf test for this tho.
r? `@compiler-errors`
I am unsure about 9d05efb66f as it doesn't improve anything wrt incremental, because we still do all the checks for valid `Drop` impls, which subsequently will still invoke many queries and basically keep the depgraph the same.
I want to do
9549077a47/compiler/rustc_middle/src/ty/trait_def.rs (L141)
but would leave that to a follow-up PR, this one changes enough things as it is
coverage: Avoid splitting spans during span extraction/refinement
This PR removes or simplifies some of the steps involved in extracting coverage-relevant spans from MIR, and preparing them for use in coverage instrumentation metadata.
A common theme is that we now try harder to avoid modifying or combining spans in non-trivial ways, because those modifications present the most risk for weird behaviour or ICEs.
The main changes are:
- When extracting spans from MIR call terminators, try to restrict them to just the function name.
- Instead of splitting spans around “holes”, just discard any span that overlaps with a hole.
- Instead of splitting macro-invocation spans into two parts, truncate them to just the macro name and subsequent `!`.
---
This results in a lot of tiny changes to the spans that end up in coverage metadata, and a few changes to coverage reports. Judging by test snapshots, these changes appear to be quite minor in practice.
This is a way to shrink call spans that doesn't involve mixing different spans,
and avoids overlap with argument spans.
This patch also removes some low-value comments that were causing rustfmt to
ignore the match arms.
Remove existing AFIDT implementation
This experiment will need to be reworked differently; I don't think we'll be going with the `dyn* Future` approach that is currently implemented.
r? oli-obk
Fixes#136286Fixes#137706Fixes#137895
Tracking:
* #133119
Rollup of 5 pull requests
Successful merges:
- #138283 (Enforce type of const param correctly in MIR typeck)
- #138439 (feat: check ARG_MAX on Unix platforms)
- #138502 (resolve: Avoid some unstable iteration)
- #138514 (Remove fake borrows of refs that are converted into non-refs in `MakeByMoveBody`)
- #138524 (Mark myself as unavailable for reviews temporarily)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove fake borrows of refs that are converted into non-refs in `MakeByMoveBody`
Remove fake borrows of closure captures if that capture has been replaced with a by-move version of that capture.
For example, given an async closure that looks like:
```
let f: Foo;
let c = async move || {
match f { ... }
};
```
... in this pair of coroutine-closure + coroutine, we capture `Foo` in the parent and `&Foo` in the child. We will emit two fake borrows like:
```
_2 = &fake shallow (*(_1.0: &Foo));
_3 = &fake shallow (_1.0: &Foo);
```
However, since the by-move-body transform is responsible for replacing `_1.0: &Foo` with `_1.0: Foo` (since the `AsyncFnOnce` coroutine will own `Foo` by value), that makes the second fake borrow obsolete since we never have an upvar of type `&Foo`, and we should replace it with a `nop`.
As a side-note, we don't actually even care about fake borrows here at all since they're fully a MIR borrowck artifact, and we don't need to borrowck by-move MIR bodies. But it's best to preserve as much as we can between these two bodies :)
Fixes#138501
r? oli-obk
This means that things like `<usize as Step>::forward_unchecked` and `<PartialOrd for f32>::le` will inline even if we've already done a bunch of inlining to find the calls to them.
Calculate predecessor count directly
Avoid allocating a vector of small vectors merely to determine how many
predecessors each basic block has.
Additionally use u8 and saturating operations. The pass only needs to
distinguish between [0..1] and [2..].
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to
consider options that avoids breaking downstream usages of cargo on
distributed `rustc-src` artifacts, where such cargo invocations fail due
to inability to inherit `lints` from workspace root manifest's
`workspace.lints` (this is only valid for the source rust-lang/rust
workspace, but not really the distributed `rustc-src` artifacts).
This breakage was reported in
<https://github.com/rust-lang/rust/issues/138304>.
This reverts commit 48caf81484, reversing
changes made to c6662879b2.
Don't include global asm in `mir_keys`, fix error body synthesis
r? oli-obk
Fixes#137470Fixes#137471Fixes#137472Fixes#137473
try-job: test-various
try-job: x86_64-apple-2
By naming them in `[workspace.lints.rust]` in the top-level
`Cargo.toml`, and then making all `compiler/` crates inherit them with
`[lints] workspace = true`. (I omitted `rustc_codegen_{cranelift,gcc}`,
because they're a bit different.)
The advantages of this over the current approach:
- It uses a standard Cargo feature, rather than special handling in
bootstrap. So, easier to understand, and less likely to get
accidentally broken in the future.
- It works for proc macro crates.
It's a shame it doesn't work for rustc-specific lints, as the comments
explain.
An inline asm terminator defines outputs along its target edges -- a
fallthrough target and labeled targets. Code generation implements this
by inserting code directly into the target blocks. This approach works
only if the target blocks don't have other predecessors.
Establish required invariant by extending existing code that breaks
critical edges before code generation.