Simplify/Optimize FileEncoder
FileEncoder is basically a BufWriter except that it exposes access to the not-written-to-yet region of the buffer so that some users can write directly to the buffer. This strategy is awesome because it lets us avoid calling memcpy for small copies, but the previous strategy was based on the writer accessing a `&mut [MaybeUninit<u8>; N]` and returning a `&[u8]` which is an API which currently mandates the use of unsafe code, making that interface in general not that appealing.
So this PR cleans up the FileEncoder implementation and builds on that general idea of direct buffer access in order to prevent `memcpy` calls in a few key places when encoding the dep graph and rmeta tables. The interface used here is now 100% safe, but with the caveat that internally we need to avoid trusting the number of bytes that the provided function claims to have written.
The original primary objective of this PR was to clean up the FileEncoder implementation so that the fix for the following issues would be easy to implement. The fix for these issues is to correctly update self.buffered even when writes fail, which I think it's easy to verify manually is now done, because all the FileEncoder methods are small.
Fixes https://github.com/rust-lang/rust/issues/115298
Fixes https://github.com/rust-lang/rust/issues/114671
Fixes https://github.com/rust-lang/rust/issues/114045
Fixes https://github.com/rust-lang/rust/issues/108100
Fixes https://github.com/rust-lang/rust/issues/106787
Currently it creates an `Option` and then does `map`/`unwrap_or` and
`map_or_else` on it, which is hard to read.
This commit simplifies things by moving more code into the two arms of
the if/else.
Rewrite MemDecoder around pointers not a slice
This is basically https://github.com/rust-lang/rust/pull/109910 but I'm being a lot more aggressive. The pointer-based structure means that it makes a lot more sense to absorb more complexity into `MemDecoder`, most of the diff is just complexity moving from one place to another.
The primary argument for this structure is that we only incur a single bounds check when doing multi-byte reads from a `MemDecoder`. With the slice-based implementation we need to do those with `data[position..position + len]` , which needs to account for `position + len` wrapping. It would be possible to dodge the first bounds check if we stored a slice that starts at `position`, but that would require updating the pointer and length on every read.
This PR also embeds the failure path in a separate function, which means that this PR should subsume all the perf wins observed in https://github.com/rust-lang/rust/pull/109867.
incr.comp.: Make sure dependencies are recorded when feeding queries during eval-always queries.
This PR makes sure we don't drop dependency edges when feeding queries during an eval-always query.
Background: During eval-always queries, no dependencies are recorded because the system knows to unconditionally re-evaluate them regardless of any actual dependencies. This works fine for these queries themselves but leads to a problem when feeding other queries: When queries are fed, we set up their dependency edges by copying the current set of dependencies of the feeding query. But because this set is empty for eval-always queries, we record no edges at all -- which has the effect that the fed query instances always look "green" to the system, although they should always be "red".
The fix is to explicitly add a dependency on the artificial "always red" dep-node when feeding during eval-always queries.
Fixes https://github.com/rust-lang/rust/issues/108481
Maybe also fixes issue https://github.com/rust-lang/rust/issues/88488.
cc `@jyn514`
r? `@cjgillot` or `@oli-obk`
Split `execute_job` into `execute_job_incr` and `execute_job_non_incr`
`execute_job` was a bit large, so this splits it in 2. Performance was neutral locally, but this may affect bootstrap times.