The end goal is to eliminate `Map` altogether.
I added a `hir_` prefix to all of them, that seemed simplest. The
exceptions are `module_items` which became `hir_module_free_items` because
there was already a `hir_module_items`, and `items` which became
`hir_free_items` for consistency with `hir_module_free_items`.
compiler: give `ExternAbi` truly stable `Hash` and `Ord`
Currently, `ExternAbi` has a bunch of code to handle the reality that, as an enum, adding more variants to it will risk it hashing differently. It forces all of those variants to be added in a fixed order, except this means that the order of the variants doesn't correspond to any logical order except "historical accident". This is all to avoid having to rebless two tests. Perhaps there were more, once upon a time? But then we invented normalization in our test suite to handle exactly this sort of issue in a more general way.
There are two options here:
- Get rid of all the logical overhead and shrug, embracing blessing a couple of tests sometimes
- Change `ExternAbi` to have an ordering and hash that doesn't depend on the number of variants
As `ExternAbi` is essentially a strongly-typed string, and thus no two strings can be identical, this implements the second of the two by hand-implementing `Ord` and `Hash` to make the hashing and comparison based on the string! This will diff the current hashes, but they will diff no more after this.
Add a TyPat in the AST to reuse the generic arg lowering logic
This simplifies ast lowering significantly with little cost to the pattern types parser.
Also fixes any problems we've had with generic args (well, pushes any problems onto the `generic_const_exprs` feature gate)
follow-up to https://github.com/rust-lang/rust/pull/136284#discussion_r1939292367
r? ``@BoxyUwU``
These were a way to ensure hashes were stable over time for ExternAbi,
but simply hashing the strings is more stable in the face of changes.
As a result, we can do away with them.
Directly map each ExternAbi variant to its string and back again.
This has a few advantages:
- By making the ABIs compare equal to their strings, we can easily
lexicographically sort them and use that sorted slice at runtime.
- We no longer need a workaround to make sure the hashes remain stable,
as they already naturally are (by being the hashes of unique strings).
- The compiler can carry around less &str wide pointers
show supported register classes in error message
a simple diagnostic change that shows the supported register classes when an invalid one is found.
This information can be hard to find (especially for unstable targets), and this message now gives at least something to try or search for. I've followed the pattern for invalid clobber ABIs.
`@rustbot` label +A-inline-assembly
These are either residue of a long-term migration away from something,
or are simply trying too hard to be specifically useful:
nearest-match suggestions for ABI strings should handle this.
By moving this stability check into AST lowering, we effectively make
it impossible to accidentally miss, as it must happen to generate HIR.
Also, we put the ABI-stability code next to code that actually uses it!
This allows code that wants to reason about backend ABI implementations
to stop worrying about high-level concerns like syntax stability,
while still leaving it as the authority on what ABIs actually exist.
It also makes it easy to refactor things to have more consistent errors.
For now, we only apply this to generalize the existing messages a bit.
Update bootstrap compiler and rustfmt
The rustfmt version we previously used formats things differently from what the latest nightly rustfmt does. This causes issues for subtrees that get formatted both in-tree and in their own repo. Updating the rustfmt used in-tree solves those issues. Also bumped the bootstrap compiler as the stage0 update command always updates both at the same
time.
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
This is continuation of https://github.com/rust-lang/rust/pull/132282 .
I'm pretty sure I did everything right. In particular, I searched all occurrences of `Lrc` in submodules and made sure that they don't need replacement.
There are other possibilities, through.
We can define `enum Lrc<T> { Rc(Rc<T>), Arc(Arc<T>) }`. Or we can make `Lrc` a union and on every clone we can read from special thread-local variable. Or we can add a generic parameter to `Lrc` and, yes, this parameter will be everywhere across all codebase.
So, if you think we should take some alternative approach, then don't merge this PR. But if it is decided to stick with `Arc`, then, please, merge.
cc "Parallel Rustc Front-end" ( https://github.com/rust-lang/rust/issues/113349 )
r? SparrowLii
`@rustbot` label WG-compiler-parallel
#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Allow using named consts in pattern types
This required a refactoring first: I had to stop using `hir::Pat`in `hir::TyKind::Pat` and instead create a separate `TyPat` that has `ConstArg` for range ends instead of `PatExpr`. Within the type system we should be using `ConstArg` for all constants, as otherwise we'd be maintaining two separate const systems that could diverge. The big advantage of this PR is that we now inherit all the rules from const generics and don't have a separate system. While this makes things harder for users (const generic rules wrt what is allowed in those consts), it also means we don't accidentally allow some things like referring to assoc consts or doing math on generic consts.
Implement unstable `new_range` feature
Switches `a..b`, `a..`, and `a..=b` to resolve to the new range types.
For rust-lang/rfcs#3550
Tracking issue #123741
also adds the re-export that was missed in the original implementation of `new_range_api`
includes post-developed commit: do not suggest internal-only keywords as corrections to parse failures.
includes post-developed commit: removed tabs that creeped in into rustfmt tool source code.
includes post-developed commit, placating rustfmt self dogfooding.
includes post-developed commit: add backquotes to prevent markdown checking from trying to treat an attr as a markdown hyperlink/
includes post-developed commit: fix lowering to keep contracts from being erroneously inherited by nested bodies (like closures).
Rebase Conflicts:
- compiler/rustc_parse/src/parser/diagnostics.rs
- compiler/rustc_parse/src/parser/item.rs
- compiler/rustc_span/src/hygiene.rs
Remove contracts keywords from diagnostic messages
Always lower to `GenericArg::Infer`
Update `PlaceholderCollector`
Update closure lifetime binder infer var visitor
Fallback visitor handle ambig infer args
Ensure type infer args have their type recorded
rustc_intrinsic: support functions without body
We synthesize a HIR body `loop {}` but such bodyless intrinsics.
Most of the diff is due to turning `ItemKind::Fn` into a brace (named-field) enum variant, because it carries a `bool`-typed field now. This is to remember whether the function has a body. MIR building panics to avoid ever translating the fake `loop {}` body, and the intrinsic logic uses the lack of a body to implicitly mark that intrinsic as must-be-overridden.
I first tried actually having no body rather than generating the fake body, but there's a *lot* of code that assumes that all function items have HIR and MIR, so this didn't work very well. Then I noticed that even `rustc_intrinsic_must_be_overridden` intrinsics have MIR generated (they are filled with an `Unreachable` terminator) so I guess I am not the first to discover this. ;)
r? `@oli-obk`
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Keep track of patterns that could have introduced a binding, but didn't
When we recover from a pattern parse error, or a pattern uses `..`, we keep track of that and affect resolution error for missing bindings that could have been provided by that pattern. We differentiate between `..` and parse recovery. We silence resolution errors likely caused by the pattern parse error.
```
error[E0425]: cannot find value `title` in this scope
--> $DIR/struct-pattern-with-missing-fields-resolve-error.rs:18:30
|
LL | if let Website { url, .. } = website {
| ------------------- this pattern doesn't include `title`, which is available in `Website`
LL | println!("[{}]({})", title, url);
| ^^^^^ not found in this scope
```
Fix#74863.