remove support for the (unstable) #[start] attribute
As explained by `@Noratrieb:`
`#[start]` should be deleted. It's nothing but an accidentally leaked implementation detail that's a not very useful mix between "portable" entrypoint logic and bad abstraction.
I think the way the stable user-facing entrypoint should work (and works today on stable) is pretty simple:
- `std`-using cross-platform programs should use `fn main()`. the compiler, together with `std`, will then ensure that code ends up at `main` (by having a platform-specific entrypoint that gets directed through `lang_start` in `std` to `main` - but that's just an implementation detail)
- `no_std` platform-specific programs should use `#![no_main]` and define their own platform-specific entrypoint symbol with `#[no_mangle]`, like `main`, `_start`, `WinMain` or `my_embedded_platform_wants_to_start_here`. most of them only support a single platform anyways, and need cfg for the different platform's ways of passing arguments or other things *anyways*
`#[start]` is in a super weird position of being neither of those two. It tries to pretend that it's cross-platform, but its signature is a total lie. Those arguments are just stubbed out to zero on ~~Windows~~ wasm, for example. It also only handles the platform-specific entrypoints for a few platforms that are supported by `std`, like Windows or Unix-likes. `my_embedded_platform_wants_to_start_here` can't use it, and neither could a libc-less Linux program.
So we have an attribute that only works in some cases anyways, that has a signature that's a total lie (and a signature that, as I might want to add, has changed recently, and that I definitely would not be comfortable giving *any* stability guarantees on), and where there's a pretty easy way to get things working without it in the first place.
Note that this feature has **not** been RFCed in the first place.
*This comment was posted [in May](https://github.com/rust-lang/rust/issues/29633#issuecomment-2088596042) and so far nobody spoke up in that issue with a usecase that would require keeping the attribute.*
Closes https://github.com/rust-lang/rust/issues/29633
try-job: x86_64-gnu-nopt
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
Revert most of #133194 (except the test and the comment fixes). Then refix
not emitting locations at all when the correct location discriminator value
exceeds LLVM's capacity.
Use a C-safe return type for `__rust_[ui]128_*` overflowing intrinsics
Combined with [1], this will change the overflowing multiplication operations to return an `extern "C"`-safe type.
Link: https://github.com/rust-lang/compiler-builtins/pull/735 [1]
Adds `#[rustc_force_inline]` which is similar to always inlining but
reports an error if the inlining was not possible, and which always
attempts to inline annotated items, regardless of optimisation levels.
It can only be applied to free functions to guarantee that the MIR
inliner will be able to resolve calls.
See llvm/llvm-project#121851
For LLVM 20+, this function (`renameModuleForThinLTO`) has no return
value. For prior versions of LLVM, this never failed, but had a
signature which allowed an error value people were handling.
Add a notion of "some ABIs require certain target features"
I think I finally found the right shape for the data and checks that I recently added in https://github.com/rust-lang/rust/pull/133099, https://github.com/rust-lang/rust/pull/133417, https://github.com/rust-lang/rust/pull/134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features.
We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested.
For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;)
As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see https://github.com/rust-lang/rust/issues/133611, but no such change is happening in this PR.
r? `@workingjubilee`
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
codegen `#[naked]` functions using global asm
tracking issue: https://github.com/rust-lang/rust/issues/90957Fixes#124375
This implements the approach suggested in the tracking issue: use the existing global assembly infrastructure to emit the body of `#[naked]` functions. The main advantage is that we now have full control over what gets generated, and are no longer dependent on LLVM not sneakily messing with our output (inlining, adding extra instructions, etc).
I discussed this approach with `@Amanieu` and while I think the general direction is correct, there is probably a bunch of stuff that needs to change or move around here. I'll leave some inline comments on things that I'm not sure about.
Combined with https://github.com/rust-lang/rust/pull/127853, if both accepted, I think that resolves all steps from the tracking issue.
r? `@Amanieu`
As a rule, the application of `unsafe` to a declaration requires that use-sites
of that declaration also require `unsafe`. For example, a field declared
`unsafe` may only be read in the lexical context of an `unsafe` block.
For nearly all safe traits, the safety obligations of fields are explicitly
discharged when they are mentioned in method definitions. For example,
idiomatically implementing `Clone` (a safe trait) for a type with unsafe fields
will require `unsafe` to clone those fields.
Prior to this commit, `Copy` violated this rule. The trait is marked safe, and
although it has no explicit methods, its implementation permits reads of `Self`.
This commit resolves this by making `Copy` conditionally safe to implement. It
remains safe to implement for ADTs without unsafe fields, but unsafe to
implement for ADTs with unsafe fields.
Tracking: #132922
rust_for_linux: -Zreg-struct-return commandline flag for X86 (#116973)
Command line flag `-Zreg-struct-return` for X86 (32-bit) for rust-for-linux.
This flag enables the same behavior as the `abi_return_struct_as_int` target spec key.
- Tracking issue: https://github.com/rust-lang/rust/issues/116973
The maximum discriminator value LLVM can currently encode is 2^12. If macro use
results in more than 2^12 calls to the same function attributed to the same
callsite, and those calls are MIR-inlined, we will require more than the maximum
discriminator value to completely represent the debug information. Once we reach
that point drop the debug info instead.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
CFI: Append debug location to CFI blocks
Currently we're not appending debug locations to the inserted CFI blocks. This shows up in #132615 and #100783. This change fixes that by passing down the debug location to the CFI type-test generation and appending it to the blocks.
Credits also belong to `@jakos-sec` who worked with me on this.
As a side effect this should add raw-dylib support to cg_gcc as the
default ArchiveBuilderBuilder that is used implements
create_dll_import_lib. I haven't tested if the raw-dylib support
actually works however.
Set "symbol name" in raw-dylib import libraries to the decorated name
`windows-rs` received a bug report that mixing raw-dylib generated and the Windows SDK import libraries was causing linker failures: <https://github.com/microsoft/windows-rs/issues/3285>
The root cause turned out to be #124958, that is we are not including the decorated name in the import library and so the import name type is also not being correctly set.
This change modifies the generation of import libraries to set the "symbol name" to the fully decorated name and correctly marks the import as being data vs function.
Note that this also required some changes to how the symbol is named within Rust: for MSVC we now need to use the decorated name but for MinGW we still need to use partially decorated (or undecorated) name.
Fixes#124958
Passing i686 MSVC and MinGW build: <1100043388>
r? `@ChrisDenton`
mark some target features as 'forbidden' so they cannot be (un)set with -Ctarget-feature
The context for this is https://github.com/rust-lang/rust/issues/116344: some target features change the way floats are passed between functions. Changing those target features is unsound as code compiled for the same target may now use different ABIs.
So this introduces a new concept of "forbidden" target features (on top of the existing "stable " and "unstable" categories), and makes it a hard error to (un)set such a target feature. For now, the x86 and ARM feature `soft-float` is on that list. We'll have to make some effort to collect more relevant features, and similar features from other targets, but that can happen after the basic infrastructure for this landed. (These features are being collected in https://github.com/rust-lang/rust/issues/131799.)
I've made this a warning for now to give people some time to speak up if this would break something.
MCP: https://github.com/rust-lang/compiler-team/issues/780
Support clobber_abi and vector registers (clobber-only) in PowerPC inline assembly
This supports `clobber_abi` which is one of the requirements of stabilization mentioned in #93335.
This basically does a similar thing I did in https://github.com/rust-lang/rust/pull/130630 to implement `clobber_abi` for s390x, but for powerpc/powerpc64/powerpc64le.
- This also supports vector registers (as `vreg`) as clobber-only, which need to support clobbering of them to implement `clobber_abi`.
- `vreg` should be able to accept `#[repr(simd)]` types as input/output if the unstable `altivec` target feature is enabled, but `core::arch::{powerpc,powerpc64}` vector types, `#[repr(simd)]`, and `core::simd` are all unstable, so the fact that this is currently a clobber-only should not be considered a blocker of clobber_abi implementation or stabilization. So I have not implemented it in this PR.
- See https://github.com/rust-lang/rust/pull/131551 (which is based on this PR) for a PR to implement this.
- (I'm not sticking to whether that PR should be a separate PR or part of this PR, so I can merge that PR into this PR if needed.)
Refs:
- PPC32 SysV: Section "Function Calling Sequence" in [System V Application Binary Interface PowerPC Processor Supplement](https://refspecs.linuxfoundation.org/elf/elfspec_ppc.pdf)
- PPC64 ELFv1: Section 3.2 "Function Calling Sequence" in [64-bit PowerPC ELF Application Binary Interface Supplement](https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#FUNC-CALL)
- PPC64 ELFv2: Section 2.2 "Function Calling Sequence" in [64-Bit ELF V2 ABI Specification](https://openpowerfoundation.org/specifications/64bitelfabi/)
- AIX: [Register usage and conventions](https://www.ibm.com/docs/en/aix/7.3?topic=overview-register-usage-conventions), [Special registers in the PowerPC®](https://www.ibm.com/docs/en/aix/7.3?topic=overview-special-registers-in-powerpc), [AIX vector programming](https://www.ibm.com/docs/en/aix/7.3?topic=concepts-aix-vector-programming)
- Register definition in LLVM: https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/PowerPC/PPCRegisterInfo.td#L189
If I understand the above four ABI documentations correctly, except for the PPC32 SysV's VR (Vector Registers) and 32-bit AIX (currently not supported by rustc)'s r13, there does not appear to be important differences in terms of implementing `clobber_abi`:
- The above four ABIs are consistent about FPR (0-13: volatile, 14-31: nonvolatile), CR (0-1,5-7: volatile, 2-4: nonvolatile), XER (volatile), and CTR (volatile).
- As for GPR, only the registers we are treating as reserved are slightly different
- r0, r3-r12 are volatile
- r1(sp, reserved), r14-31 are nonvolatile
- r2(reserved) is TOC pointer in PPC64 ELF/AIX, system-reserved register in PPC32 SysV (AFAIK used as thread pointer in Linux/BSDs)
- r13(reserved for non-32-bit-AIX) is thread pointer in PPC64 ELF, small data area pointer register in PPC32 SysV, "reserved under 64-bit environment; not restored across system calls[^r13]" in AIX)
- As for FPSCR, volatile in PPC64 ELFv1/AIX, some fields are volatile only in certain situations (rest are volatile) in PPC32 SysV/PPC64 ELFv2.
- As for VR (Vector Registers), it is not mentioned in PPC32 SysV, v0-v19 are volatile in both in PPC64 ELF/AIX, v20-v31 are nonvolatile in PPC64 ELF, reserved or nonvolatile depending on the ABI ([vec-extabi vs vec-default in LLVM](https://reviews.llvm.org/D89684), we are [using vec-extabi](https://github.com/rust-lang/rust/pull/131341#discussion_r1797693299)) in AIX:
> When the default Vector enabled mode is used, these registers are reserved and must not be used.
> In the extended ABI vector enabled mode, these registers are nonvolatile and their values are preserved across function calls
I left [FIXME comment about PPC32 SysV](https://github.com/rust-lang/rust/pull/131341#discussion_r1790496095) and added ABI check for AIX.
- As for VRSAVE, it is not mentioned in PPC32 SysV, nonvolatile in PPC64 ELFv1, reserved in PPC64 ELFv2/AIX
- As for VSCR, it is not mentioned in PPC32 SysV/PPC64 ELFv1, some fields are volatile only in certain situations (rest are volatile) in PPC64 ELFv2, volatile in AIX
We are currently treating r1-r2, r13 (non-32-bit-AIX), r29-r31, LR, CTR, and VRSAVE as reserved.
We are currently not processing anything about FPSCR and VSCR, but I feel those are things that should be processed by `preserves_flags` rather than `clobber_abi` if we need to do something about them. (However, PPCRegisterInfo.td in LLVM does not seem to define anything about them.)
Replaces #111335 and #124279
cc `@ecnelises` `@bzEq` `@lu-zero`
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
[^r13]: callee-saved, according to [LLVM](6a6af0246b/llvm/lib/Target/PowerPC/PPCCallingConv.td (L322)) and [GCC](a9173a50e7/gcc/config/rs6000/rs6000.h (L859)).
The target name can be anything with custom target specs. Matching on
fields inside the target spec is much more robust than matching on the
target name.