errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
This makes it more like `hir::TyKind::Err`, and avoids a
`span_delayed_bug` call in `LoweringContext::lower_ty_direct`.
It also requires adding `ast::TyKind::Dummy`, now that
`ast::TyKind::Err` can't be used for that purpose in the absence of an
error emission.
There are a couple of cases that aren't as neat as I would have liked,
marked with `FIXME` comments.
When encountering a tail expression in the then arm of an `if` expression
without an `else` arm, account for `async fn` and `async` blocks to
suggest `return`ing the value and pointing at the return type of the
`async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
Properly recover from trailing attr in body
When encountering an attribute in a body, we try to recover from an attribute on an expression (as opposed to a statement). We need to properly clean up when the attribute is at the end of the body where a tail expression would be.
Fix#118164, fix#118575.
When encountering an attribute in a body, we try to recover from an
attribute on an expression (as opposed to a statement). We need to
properly clean up when the attribute is at the end of the body where a
tail expression would be.
Fix#118164.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
The old code was very hard to understand, involving an
`emit_without_consuming` call *and* a `delay_as_bug_without_consuming`
call.
With slight changes both calls can be avoided. Not creating the error
until later is crucial, as is the early return in the `if recovered`
block.
It took me some time to come up with this reworking -- it went through
intermediate states much further from the original code than this final
version -- and it's isn't obvious at a glance that it is equivalent. But
I think it is, and the unchanged test behaviour is good supporting
evidence.
The commit also changes `check_trailing_angle_brackets` to return
`Option<ErrorGuaranteed>`. This provides a stricter proof that it
emitted an error message than asserting `dcx.has_errors().is_some()`,
which would succeed if any error had previously been emitted anywhere.
Instead of taking `seq` as a mutable reference,
`maybe_recover_struct_lit_bad_delims` now consumes `seq` on the recovery
path, and returns `seq` unchanged on the non-recovery path. The commit
also combines an `if` and a `match` to merge two identical paths.
Also change `recover_seq_parse_error` so it receives a `PErr` instead of
a `PResult`, because all the call sites now handle the `Ok`/`Err`
distinction themselves.
In this parsing recovery function, we only need to emit the previously
obtained error message and mark `expr` as erroneous in the case where we
actually recover.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Add check for possible CStr literals in pre-2021
Fixes [#118654](https://github.com/rust-lang/rust/issues/118654)
Adds information to errors caused by possible CStr literals in pre-2021.
The lexer separates `c"str"` into two tokens if the edition is less than 2021, which later causes an error when parsing. This error now has a more helpful message that directs them to information about editions. However, the user might also have written `c "str"` in a later edition, so to not confuse people who _are_ using a recent edition, I also added a note about whitespace.
We could probably figure out exactly which scenario has been encountered by examining spans and editions, but I figured it would be better not to overcomplicate the creation of the error too much.
This is my first code PR and I tried to follow existing conventions as much as possible, but I probably missed something, so let me know!
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Tweak unclosed generics errors
Remove unnecessary span label for parse errors that already have a suggestion.
Provide structured suggestion to close generics in more cases.
Because a macro invocation can expand to a never pattern, we can't rule
out a `arm!(),` arm at parse time. Instead we detect that case at
expansion time, if the macro tries to output a pattern followed by `=>`.
The new place makes more sense and covers more cases beyond individual
statements.
```
error: expected one of `.`, `;`, `?`, `else`, or an operator, found doc comment `//!foo
--> $DIR/doc-comment-in-stmt.rs:25:22
|
LL | let y = x.max(1) //!foo
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected one of `.`, `;`, `?`, `else`, or an operator
|
help: add a space before `!` to write a regular comment
|
LL | let y = x.max(1) // !foo
| +
```
Fix#65329.
Format all the let-chains in compiler crates
Since rust-lang/rustfmt#5910 has landed, soon we will have support for formatting let-chains (as soon as rustfmt syncs and beta gets bumped).
This PR applies the changes [from master rustfmt to rust-lang/rust eagerly](374997516), so that the next beta bump does not have to deal with a 200+ file diff and can remain concerned with other things like `cfg(bootstrap)` -- #113637 was a pain to land, for example, because of let-else.
I will also add this commit to the ignore list after it has landed.
The commands that were run -- I'm not great at bash-foo, but this applies rustfmt to every compiler crate, and then reverts the two crates that should probably be formatted out-of-tree.
```
~/rustfmt $ ls -1d ~/rust/compiler/* | xargs -I@ cargo run --bin rustfmt -- `@/src/lib.rs` --config-path ~/rust --edition=2021 # format all of the compiler crates
~/rust $ git checkout HEAD -- compiler/rustc_codegen_{gcc,cranelift} # revert changes to cg-gcc and cg-clif
```
cc `@rust-lang/rustfmt`
r? `@WaffleLapkin` or `@Nilstrieb` who said they may be able to review this purely mechanical PR :>
cc `@Mark-Simulacrum` and `@petrochenkov,` who had some thoughts on the order of operations with big formatting changes in https://github.com/rust-lang/rust/pull/95262#issue-1178993801. I think the situation has changed since then, given that let-chains support exists on master rustfmt now, and I'm fairly confident that this formatting PR should land even if *bootstrap* rustfmt doesn't yet format let-chains in order to lessen the burden of the next beta bump.