perf: Don't track specific live points for promoteds
We don't query this information out of the promoted (it's basically a single "unit" regardless of the complexity within it) and this saves on re-initializing the SparseIntervalMatrix's backing IndexVec with mostly empty rows for all of the leading regions in the function. Typical promoteds will only contain a few regions that need up be uplifted, while the parent function can have thousands.
For a simple function repeating println!("Hello world"); 50,000 times this reduces compile times from 90 to 15 seconds in debug mode. The previous implementations re-initialization led to an overall roughly n^2 runtime as each promoted initialized slots for ~n regions, now we scale closer to linearly (5000 hello worlds takes 1.1 seconds).
cc https://github.com/rust-lang/rust/issues/50994, https://github.com/rust-lang/rust/issues/86244
Don't use `ReErased` to detect type test promotion failed
Using `ReErased` here is convenient because it implicitly stores the state that we are explicitly recording with the `failed` variable now, but I also think it adds a tiny bit of complexity that is not worth it.
r? `@aliemjay`
`single_use_lifetimes`: Don't suggest deleting lifetimes with bounds
Closes#117965
```
9 | pub fn get<'b: 'a>(&'b self) -> &'a str {
| ^^ -- ...is used only here
| |
| this lifetime...
```
In this example, I think the `&'b self` can be replaced with the bound itself, yielding `&'a self`, but this would require a deeper refactor. Happy to do as a follow-on PR if desired.
Teach tidy about line/col information for malformed features
This makes it significantly easier to find the specific feature, since you can now just click it in the command line of your IDE
Avoid ICEs in trait names without `dyn`
Check diagnostic is error before downgrading. Fix#119633.
Account for traits using self-trait by name without `dyn`. Fix#119652.
Expose Obligations created during type inference.
This PR is a first pass at exposing the trait obligations generated and solved for during the type-check progress. Exposing these obligations allows for rustc plugins to use the public interface for proof trees (provided by the next gen trait solver).
The changes proposed track *all* obligations during the type-check process, this is desirable to not only look at the trees of failed obligations, but also those of successfully proved obligations. This feature is placed behind an unstable compiler option `track-trait-obligations` which should be used together with the `next-solver` option. I should note that the main interface is the function `inspect_typeck` made public in `rustc_hir_typeck/src/lib.rs` which allows the caller to provide a callback granting access to the `FnCtxt`.
r? `@lcnr`
Stabilize single-field offset_of
This PR stabilizes offset_of for a single field. There has been some further discussion at https://github.com/rust-lang/rust/issues/106655 about whether this is advisable; I'm opening the PR anyway so that the code is available.
fix panic with reference in macro
it panic at `builder.make_mut(segment)`, where segment is from macro expand. And the usage reference in orginal macro call isn't a `PathSegment` so we can't update it in `apply_references`, I can't find a way to deal with it properly so here just filter out the reference in macro. LMK if there are better way to fix this
try to close https://github.com/rust-lang/rust-analyzer/issues/16328
We don't query this information out of the promoted (it's basically a
single "unit" regardless of the complexity within it) and this saves on
re-initializing the SparseIntervalMatrix's backing IndexVec with mostly
empty rows for all of the leading regions in the function. Typical
promoteds will only contain a few regions that need up be uplifted,
while the parent function can have thousands.
For a simple function repeating println!("Hello world"); 50,000 times
this reduces compile times from 90 to 15 seconds in debug mode. The
previous implementations re-initialization led to an overall roughly n^2
runtime as each promoted initialized slots for ~n regions, now we scale
closer to linearly (5000 hello worlds takes 1.1 seconds).
LLVM 18 x86 data layout update
With https://reviews.llvm.org/D86310 LLVM now has i128 aligned to 16-bytes on x86 based platforms. This will be in LLVM-18. This patch updates all our spec targets to be 16-byte aligned, and removes the alignment when speaking to older LLVM.
This results in Rust overaligning things relative to LLVM on older LLVMs.
This implements MCP https://github.com/rust-lang/compiler-team/issues/683.
See #54341
InPlaceDstBufDrop holds onto the allocation before the shrinking happens
which means it must deallocate the destination elements but the source
allocation.
Work through temporarily allowed clippy lints, part 1
This is the first batch of not allowing but actually fixing the clippy lints. Each commit removes one lint from the lint table and then fixes the resulting warnings.
Follow-up to #16401
Restrict access to the private field of newtype indexes
Well... we don't have the capability to forbid you to access private fields in the same module, and I don't want to add module shenanigans in the expansion of the macro. So... we just name the field creatively so that no one actually uses it.
Suggest `.swap()` when encountering conflicting borrows from `mem::swap` on a slice
This PR modifies the existing suggestion by matching on `[ProjectionElem::Deref, ProjectionElem::Index(_)]` instead of just `[ProjectionElem::Index(_)]`, which caused us to miss many cases. Additionally, it adds a more specific, machine-applicable suggestion in the case we determine `mem::swap` was used to swap elements in a slice.
Closes#102269
Don't add needs-triage to A-diagnostics
A-diagnostics is already labeled correctly thanks to the template and there usually isn't much to do on those issues, so it's fine to just add them to the pile.