Begin to implement type system layer of unsafe binders
Mostly TODOs, but there's a lot of match arms that are basically just noops so I wanted to split these out before I put up the MIR lowering/projection part of this logic.
r? oli-obk
Tracking:
- https://github.com/rust-lang/rust/issues/130516
Reduce the amount of explicit FatalError.raise()
Instead use dcx.abort_if_error() or guar.raise_fatal() instead. These guarantee that an error actually happened previously and thus we don't silently abort.
Instead use dcx.abort_if_error() or guar.raise_fatal() instead. These
guarantee that an error actually happened previously and thus we don't
silently abort.
Variants::Single: do not use invalid VariantIdx for uninhabited enums
~~Stacked on top of https://github.com/rust-lang/rust/pull/133681, only the last commit is new.~~
Currently, `Variants::Single` for an empty enum contains a `VariantIdx` of 0; looking that up in the enum variant list will ICE. That's quite confusing. So let's fix that by adding a new `Variants::Empty` case for types that have 0 variants.
try-job: i686-msvc
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Hir attributes
This PR needs some explanation, it's somewhat large.
- This is step one as described in https://github.com/rust-lang/compiler-team/issues/796. I've added a new `hir::Attribute` which is a lowered version of `ast::Attribute`. Right now, this has few concrete effects, however every place that after this PR parses a `hir::Attribute` should later get a pre-parsed attribute as described in https://github.com/rust-lang/compiler-team/issues/796 and transitively https://github.com/rust-lang/rust/issues/131229.
- an extension trait `AttributeExt` is added, which is implemented for both `ast::Attribute` and `hir::Atribute`. This makes `hir::Attributes` mostly compatible with code that used to parse `ast::Attribute`. All its methods are also added as inherent methods to avoid having to import the trait everywhere in the compiler.
- Incremental can not not hash `ast::Attribute` at all.
reject aarch64 target feature toggling that would change the float ABI
~~Stacked on top of https://github.com/rust-lang/rust/pull/133099. Only the last two commits are new.~~
The first new commit lays the groundwork for separately controlling whether a feature may be enabled or disabled. The second commit uses that to make it illegal to *disable* the `neon` feature (which is only possible via `-Ctarget-feature`, and so the new check just adds a warning). Enabling the `neon` feature remains allowed on targets that don't disable `neon` or `fp-armv8`, which is all our built-in targets. This way, the entire PR is not a breaking change.
Fixes https://github.com/rust-lang/rust/issues/131058 for hardfloat targets (together with https://github.com/rust-lang/rust/pull/133102 which fixed it for softfloat targets).
Part of https://github.com/rust-lang/rust/issues/116344.
Modifies the index instruction from `gep [0 x %Type]` to `gep %Type`
Fixes#133979.
This PR modifies the index instruction from `gep [0 x %Type]` to `gep %Type`, which is the same with pointer offset calculation.
This will help LLVM calculate various formats of GEP instructions. According to [[RFC] Replacing getelementptr with ptradd](https://discourse.llvm.org/t/rfc-replacing-getelementptr-with-ptradd/68699), we ultimately aim to canonicalize everything to `gep i8`. Based on the results from https://github.com/rust-lang/rust/pull/134117#issuecomment-2531717076, I think we still need to investigate some missing optimizations, so this PR is just a small step forward.
r? compiler
Add some convenience helper methods on `hir::Safety`
Makes a lot of call sites simpler and should make any refactorings needed for https://github.com/rust-lang/rust/pull/134090#issuecomment-2541332415 simpler, as fewer sites have to be touched in case we end up storing some information in the variants of `hir::Safety`
don't show the full linker args unless `--verbose` is passed
the linker arguments can be *very* long, especially for crates with many dependencies. often they are not useful. omit them unless the user specifically requests them.
split out from https://github.com/rust-lang/rust/pull/119286. fixes https://github.com/rust-lang/rust/issues/109979.
r? `@bjorn3`
try-build: i686-mingw
the linker arguments can be *very* long, especially for crates with many dependencies. some parts of them are not very useful. unless specifically requested:
- omit object files specific to the current invocation
- fold rlib files into a single braced argument (in shell expansion format)
this shortens the output significantly without removing too much information.
A bunch of cleanups (part 2)
Just like https://github.com/rust-lang/rust/pull/133567 these were all found while looking at the respective code, but are not blocking any other changes I want to make in the short term.
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
It is treated as a map already. This is using FxIndexMap rather than
UnordMap because the latter doesn't provide an api to pick a single
value iff all values are equal, which each_linked_rlib depends on.
Pass end position of span through inline ASM cookie
Before this PR, only the start position of the span was passed though the inline ASM cookie to diagnostics. LLVM 19 has full support for 64-bit inline ASM cookies; this PR uses that to pass the end position of the span in the upper 32 bits, meaning inline ASM diagnostics now point at the entire line the error occurred on, not just the first character of it.
codegen `#[naked]` functions using global asm
tracking issue: https://github.com/rust-lang/rust/issues/90957Fixes#124375
This implements the approach suggested in the tracking issue: use the existing global assembly infrastructure to emit the body of `#[naked]` functions. The main advantage is that we now have full control over what gets generated, and are no longer dependent on LLVM not sneakily messing with our output (inlining, adding extra instructions, etc).
I discussed this approach with `@Amanieu` and while I think the general direction is correct, there is probably a bunch of stuff that needs to change or move around here. I'll leave some inline comments on things that I'm not sure about.
Combined with https://github.com/rust-lang/rust/pull/127853, if both accepted, I think that resolves all steps from the tracking issue.
r? `@Amanieu`
[AIX] keep profile-rt symbol alive
Clang passes `-u __llvm_profile_runtime` on AIX. https://reviews.llvm.org/D136192
We want to preserve the symbol in the case there are no instrumented object files.
[AIX] Pass -bnoipath when adding rust upstream dynamic crates
Unlike ELF linkers, AIX doesn't feature `DT_SONAME` to override
the dependency name when outputing a shared library, which is something
we rely on for dylib crates.
See for reference:
bc145cec45/compiler/rustc_codegen_ssa/src/back/linker.rs (L464))
Thus, `ld` on AIX will use the full path to shared libraries as the dependency if passed it
by default unless `noipath` is passed, so pass it here so we don't end up with full path dependencies
for dylib crates.
Lint on combining `#[no_mangle]` and `#[export_name]`
This is my very first contribution to the compiler, even though I read the [chapter about lints](https://rustc-dev-guide.rust-lang.org/diagnostics.html) I'm not very certain that this ~~new lint is done right as a builtin lint~~ PR is right. I appreciate any guidance on how to improve the code.
- Add test for issue #47446
- ~~Implement the new lint `mixed_export_name_and_no_mangle` as a builtin lint (not sure if that is the right way to go)~~ Extend `unused_attributes` lint
- Add suggestion how to fix it
<details>
<summary>Old proposed new lint</summary>
> The `mixed_export_name_and_no_mangle` lint detects usage of both `#[export_name]` and `#[no_mangle]` on the same item which results on `#[no_mangle]` being ignored.
>
> *warn-by-default*
>
> ### Example
>
> ```rust
> #[no_mangle] // ignored
> #[export_name = "foo"] // takes precedences
> pub fn bar() {}
> ```
>
> ### Explanation
>
> The compiler will not respect the `#[no_mangle]` attribute when generating the symbol name for the function, as the `#[export_name]` attribute takes precedence. This can lead to confusion and is unnecessary.
</details>
A bunch of cleanups
These are all extracted from a branch I have to get rid of driver queries. Most of the commits are not directly necessary for this, but were found in the process of implementing the removal of driver queries.
Previous PR: https://github.com/rust-lang/rust/pull/132410
It was inconsistently done (sometimes even within a single function) and
most of the rest of the compiler uses fatal errors instead, which need
to be caught using catch_with_exit_code anyway. Using fatal errors
instead of ErrorGuaranteed everywhere in the driver simplifies things a
bit.