Support setting file accessed/modified timestamps
Add `struct FileTimes` to contain the relevant file timestamps, since
most platforms require setting all of them at once. (This also allows
for future platform-specific extensions such as setting creation time.)
Add `File::set_file_time` to set the timestamps for a `File`.
Implement the `sys` backends for UNIX, macOS (which needs to fall back
to `futimes` before macOS 10.13 because it lacks `futimens`), Windows,
and WASI.
This allows using most delay loaded functions before the init code initializes them. It also only preloads a select few functions, rather than all functions.
Co-Authored-By: Mark Rousskov <mark.simulacrum@gmail.com>
Add `struct FileTimes` to contain the relevant file timestamps, since
most platforms require setting all of them at once. (This also allows
for future platform-specific extensions such as setting creation time.)
Add `File::set_file_time` to set the timestamps for a `File`.
Implement the `sys` backends for UNIX, macOS (which needs to fall back
to `futimes` before macOS 10.13 because it lacks `futimens`), Windows,
and WASI.
In some situations it is possible for required functions to be called before they've had a chance to be loaded. Therefore, we make it possible to recover from this situation simply by looking at error codes.
Issue #84096 changed the hashmap RNG to use BCryptGenRandom instead of
RtlGenRandom on Windows.
Mozilla Firefox started experiencing random failures in
env_logger::Builder::new() (Issue #94098) during initialization of their
unsandboxed main process with an "Access Denied" error message from
BCryptGenRandom(), which is used by the HashMap contained in
env_logger::Builder
The root cause appears to be a virus scanner or other software interfering
with BCrypt DLLs loading.
This change adds a fallback option if BCryptGenRandom is unusable for
whatever reason. It will fallback to RtlGenRandom in this case.
Fixes#94098
Windows: Synchronize asynchronous pipe reads and writes
On Windows, the pipes used for spawned processes are opened for asynchronous access but `read` and `write` are done using the standard methods that assume synchronous access. This means that the buffer (and variables on the stack) may be read/written to after the function returns.
This PR ensures reads/writes complete before returning. Note that this only applies to pipes we create and does not affect the standard file read/write methods.
Fixes#95411
Use the new `HandleOrNull` and `HandleOrInvalid` types that were introduced
as part of [I/O safety] in a few functions in the Windows FFI bindings.
This factors out an `unsafe` block and two `unsafe` function calls in the
Windows implementation code.
And, it helps test `HandleOrNull` and `HandleOrInvalid`, which indeed turned
up a bug: `OwnedHandle` also needs to be `#[repr(transparent)]`, as it's
used inside of `HandleOrNull` and `HandleOrInvalid` which are also
`#[repr(transparent)]`.
[I/O safety]: https://github.com/rust-lang/rust/issues/87074
The ability to interoperate with C code via FFI is not limited to crates
using std; this allows using these types without std.
The existing types in `std::os::raw` become type aliases for the ones in
`core::ffi`. This uses type aliases rather than re-exports, to allow the
std types to remain stable while the core types are unstable.
This also moves the currently unstable `NonZero_` variants and
`c_size_t`/`c_ssize_t`/`c_ptrdiff_t` types to `core::ffi`, while leaving
them unstable.
Update std::env::temp_dir to use GetTempPath2 on Windows when available.
As a security measure, Windows 11 introduces a new temporary directory API, GetTempPath2.
When the calling process is running as SYSTEM, a separate temporary directory
will be returned inaccessible to non-SYSTEM processes. For non-SYSTEM processes
the behavior will be the same as before.
This can help mitigate against attacks such as this one:
https://medium.com/csis-techblog/cve-2020-1088-yet-another-arbitrary-delete-eop-a00b97d8c3e2
Compatibility risk: Software which relies on temporary files to communicate between SYSTEM and non-SYSTEM
processes may be affected by this change. In many cases, such patterns may be vulnerable to the very
attacks the new API was introduced to harden against.
I'm unclear on the Rust project's tolerance for such change-of-behavior in the standard library. If anything,
this PR is meant to raise awareness of the issue and hopefully start the conversation.
How tested: Taking the example code from the documentation and running it through psexec (from SysInternals) on
Win10 and Win11.
On Win10:
C:\test>psexec -s C:\test\main.exe
<...>
Temporary directory: C:\WINDOWS\TEMP\
On Win11:
C:\test>psexec -s C:\test\main.exe
<...>
Temporary directory: C:\Windows\SystemTemp\
Automatically convert paths to verbatim for filesystem operations that support it
This allows using longer paths without the user needing to `canonicalize` or manually prefix paths. If the path is already verbatim then this has no effect.
Fixes: #32689
As a security measure, Windows 11 introduces a new temporary directory API, GetTempPath2.
When the calling process is running as SYSTEM, a separate temporary directory
will be returned inaccessible to non-SYSTEM processes. For non-SYSTEM processes
the behavior will be the same as before.
This allows using longer paths for filesystem operations without the user needing to `canonicalize` or manually prefix paths.
If the path is already verbatim than this has no effect.
When using `process::Command` on Windows, environment variable names must be case-preserving but case-insensitive
When using `Command` to set the environment variables, the key should be compared as uppercase Unicode but when set it should preserve the original case.
Fixes#85242
More ErrorKinds for common errnos
From the commit message of the main commit here (as revised):
```
There are a number of IO error situations which it would be very
useful for Rust code to be able to recognise without having to resort
to OS-specific code. Taking some Unix examples, `ENOTEMPTY` and
`EXDEV` have obvious recovery strategies. Recently I was surprised to
discover that `ENOSPC` came out as `ErrorKind::Other`.
Since I am familiar with Unix I reviwed the list of errno values in
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
Here, I add those that most clearly seem to be needed.
`@CraftSpider` provided information about Windows, and references, which
I have tried to take into account.
This has to be insta-stable because we can't sensibly have a different
set of ErrorKinds depending on a std feature flag.
I have *not* added these to the mapping tables for any operating
systems other than Unix and Windows. I hope that it is OK to add them
now for Unix and Windows now, and maybe add them to other OS's mapping
tables as and when someone on that OS is able to consider the
situation.
I adopted the general principle that it was usually a bad idea to map
two distinct error values to the same Rust error code. I notice that
this principle is already violated in the case of `EACCES` and
`EPERM`, which both map to `PermissionDenied`. I think this was
probably a mistake but it would be quite hard to change now, so I
don't propose to do anything about that.
However, for Windows, there are sometimes different error codes for
identical situations. Eg there are WSA* versions of some error
codes as well as ERROR_* ones. Also Windows seems to have a great
many more erorr codes. I don't know precisely what best practice
would be for Windows.
```
<strike>
```
Errno values I wasn't sure about so *haven't* included:
EMFILE ENFILE ENOBUFS ENOLCK:
These are all fairly Unix-specific resource exhaustion situations.
In practice it seemed not very likely to me that anyone would want
to handle these differently to `Other`.
ENOMEM ERANGE EDOM EOVERFLOW
Normally these don't get exposed to the Rust callers I hope. They
don't tend to come out of filesystem APIs.
EILSEQ
Hopefully Rust libraries open files in binary mode and do the
converstion in Rust. So Rust code ought not to be exposed to
EILSEQ.
EIO
The range of things that could cause this is troublesome. I found
it difficult to describe. I do think it would be useful to add this
at some point, because EIO on a filesystem operation is much more
serious than most other errors.
ENETDOWN
I wasn't sure if this was useful or, indeed, if any modern systems
use it.
ENOEXEC
It is not clear to me how a Rust program could respond to this. It
seems rather niche.
EPROTO ENETRESET ENODATA ENOMSG ENOPROTOOPT ENOSR ENOSTR ETIME
ENOTRECOVERABLE EOWNERDEAD EBADMSG EPROTONOSUPPORT EPROTOTYPE EIDRM
These are network or STREAMS related errors which I have never in
my own Unix programming found the need to do anything with. I think
someone who understands these better should be the one to try to
find good Rust names and descriptions for them.
ENOTTY ENXIO ENODEV EOPNOTSUPP ESRCH EALREADY ECANCELED ECHILD
EINPROGRESS
These are very hard to get unless you're already doing something
very Unix-specific, in which case the raw_os_error interface is
probably more suitable than relying on the Rust ErrorKind mapping.
EFAULT EBADF
These would seem to be the result of application UB.
```
</strike>
<i>(omitted errnos are discussed below, especially in https://github.com/rust-lang/rust/pull/79965#issuecomment-810468334)
We're going to add many more of these.
This commit is pure code motion, plus the necessary administrivia, as
I have veried with the following runes:
$ git-diff HEAD~ | grep '^+' |sort >plus
$ git-diff HEAD~ | grep '^-' | perl -pe 's/^-/+/' |sort >min
$ diff -ub min plus |less
The output is precisely the expected `mod` and `use` directives.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
DWORD is a type alias for u32, so this makes no difference.
But this entry is anomalous and in my forthcoming commits I am going
to import many errors wholesale, and I spotted that my wholesale
import didn't match what was here.
CC: Chris Denton <christophersdenton@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
MSVC: Avoid using jmp stubs for dll function imports
Windows import libraries contain two symbols for every function: `__imp_FunctionName` and `FunctionName` (where `FunctionName` is the name of the function to be imported).
`__imp_FunctionName` contains the address of the imported function. This will be filled in by the Windows executable loader at runtime. `FunctionName` contains a jmp stub that simply jumps to the address given by `__imp_FunctionName`. E.g. it's a function that solely contains a single jmp instruction:
```asm
jmp __imp_FunctionName
```
When using an external DLL function in Rust, by default the linker will link to FunctionName, causing a bit of indirection at runtime. In Microsoft's C++ it's possible to instead tell it to insert calls to the address in `__imp_FunctionName` by using the `__declspec(dllimport)` attribute. In Rust it's possible to get effectively the same behaviour using the `#[link]` attribute on `extern` blocks.
----
The second commit also merges multiple `extern` blocks into one block. This is because otherwise Rust will currently create duplicate linker arguments for each block. In this case having duplicates shouldn't matter much other than the noise when displaying the linker command.
On Windows, libstd uses GetProcAddress to locate some DLL imports, so
that libstd can run on older versions of Windows. If a given DLL import
is not present, then libstd uses other behavior (such as fallback
implementations).
This commit uses a feature of the Windows CRT to do these DLL imports
during module initialization, before main() (or DllMain()) is called.
This is the ideal time to resolve imports, because the module is
effectively single-threaded at that point; no other threads can
touch the data or code of the module that is being initialized.
This avoids several problems. First, it makes the cost of performing
the DLL import lookups deterministic. Right now, the DLL imports are
done on demand, which means that application threads _might_ have to
do the DLL import during some time-sensitive operation. This is a
small source of unpredictability. Since threads can race, it's even
possible to have more than one thread running the same redundant
DLL lookup.
This commit also removes using the heap to allocate strings, during
the DLL lookups.
The minimum supported Windows version is now Windows 7. Windows XP
and Windows Vista are no longer supported; both are already broken, and
require extra steps to use.
This commit removes the delayed-binding support for Windows API
functions that are present on all supported Windows targets. This has
several benefits: Removes needless complexity. Removes a load and
dynamic call on hot paths in mutex acquire / release. This may have
performance benefits.
* "Drop official support for Windows XP"
https://github.com/rust-lang/compiler-team/issues/378
* "Firefox has ended support for Windows XP and Vista"
https://support.mozilla.org/en-US/kb/end-support-windows-xp-and-vista