These referred to a “`Write`er”—extra *e*. Presumably a copy-paste
holdover from “`Read`er”.
Test Plan:
Running ``git grep '`\?[Ww]rite`\?er'`` no longer finds any results.
wchargin-branch: io-write-docs
Simplify output capturing
This is a sequence of incremental improvements to the unstable/internal `set_panic` and `set_print` mechanism used by the `test` crate:
1. Remove the `LocalOutput` trait and use `Arc<Mutex<dyn Write>>` instead of `Box<dyn LocalOutput>`. In practice, all implementations of `LocalOutput` were just `Arc<Mutex<..>>`. This simplifies some logic and removes all custom `Sink` implementations such as `library/test/src/helpers/sink.rs`. Also removes a layer of indirection, as the outermost `Box` is now gone. It also means that locking now happens per `write_fmt`, not per individual `write` within. (So `"{} {}\n"` now results in one `lock()`, not four or more.)
2. Since in all cases the `dyn Write`s were just `Vec<u8>`s, replace the type with `Arc<Mutex<Vec<u8>>>`. This simplifies things more, as error handling and flushing can be removed now. This also removes the hack needed in the default panic handler to make this work with `::realstd`, as (unlike `Write`) `Vec<u8>` is from `alloc`, not `std`.
3. Replace the `RefCell`s by regular `Cell`s. The `RefCell`s were mostly used as `mem::replace(&mut *cell.borrow_mut(), something)`, which is just `Cell::replace`. This removes an unecessary bookkeeping and makes the code a bit easier to read.
4. Merge `set_panic` and `set_print` into a single `set_output_capture`. Neither the test crate nor rustc (the only users of this feature) have a use for using these separately. Merging them simplifies things even more. This uses a new function name and feature name, to make it clearer this is internal and not supposed to be used by other crates.
Might be easier to review per commit.
specialize io::copy to use copy_file_range, splice or sendfile
Fixes#74426.
Also covers #60689 but only as an optimization instead of an official API.
The specialization only covers std-owned structs so it should avoid the problems with #71091
Currently linux-only but it should be generalizable to other unix systems that have sendfile/sosplice and similar.
There is a bit of optimization potential around the syscall count. Right now it may end up doing more syscalls than the naive copy loop when doing short (<8KiB) copies between file descriptors.
The test case executes the following:
```
[pid 103776] statx(3, "", AT_STATX_SYNC_AS_STAT|AT_EMPTY_PATH, STATX_ALL, {stx_mask=STATX_ALL|STATX_MNT_ID, stx_attributes=0, stx_mode=S_IFREG|0644, stx_size=17, ...}) = 0
[pid 103776] write(4, "wxyz", 4) = 4
[pid 103776] write(4, "iklmn", 5) = 5
[pid 103776] copy_file_range(3, NULL, 4, NULL, 5, 0) = 5
```
0-1 `stat` calls to identify the source file type. 0 if the type can be inferred from the struct from which the FD was extracted
𝖬 `write` to drain the `BufReader`/`BufWriter` wrappers. only happen when buffers are present. 𝖬 ≾ number of wrappers present. If there is a write buffer it may absorb the read buffer contents first so only result in a single write. Vectored writes would also be an option but that would require more invasive changes to `BufWriter`.
𝖭 `copy_file_range`/`splice`/`sendfile` until file size, EOF or the byte limit from `Take` is reached. This should generally be *much* more efficient than the read-write loop and also have other benefits such as DMA offload or extent sharing.
## Benchmarks
```
OLD
test io::tests::bench_file_to_file_copy ... bench: 21,002 ns/iter (+/- 750) = 6240 MB/s [ext4]
test io::tests::bench_file_to_file_copy ... bench: 35,704 ns/iter (+/- 1,108) = 3671 MB/s [btrfs]
test io::tests::bench_file_to_socket_copy ... bench: 57,002 ns/iter (+/- 4,205) = 2299 MB/s
test io::tests::bench_socket_pipe_socket_copy ... bench: 142,640 ns/iter (+/- 77,851) = 918 MB/s
NEW
test io::tests::bench_file_to_file_copy ... bench: 14,745 ns/iter (+/- 519) = 8889 MB/s [ext4]
test io::tests::bench_file_to_file_copy ... bench: 6,128 ns/iter (+/- 227) = 21389 MB/s [btrfs]
test io::tests::bench_file_to_socket_copy ... bench: 13,767 ns/iter (+/- 3,767) = 9520 MB/s
test io::tests::bench_socket_pipe_socket_copy ... bench: 26,471 ns/iter (+/- 6,412) = 4951 MB/s
```
The (internal) std::io::lazy::Lazy was used to lazily initialize the
stdout and stdin buffers (and mutexes). It uses atexit() to register a
destructor to flush the streams on exit, and mark the streams as
'closed'. Using the stream afterwards would result in a panic.
Stdout uses a LineWriter which contains a BufWriter that will flush the
buffer on drop. This one is important to be executed during shutdown,
to make sure no buffered output is lost. It also forbids access to
stdout afterwards, since the buffer is already flushed and gone.
Stdin uses a BufReader, which does not implement Drop. It simply forgets
any previously read data that was not read from the buffer yet. This
means that in the case of stdin, the atexit() function's only effect is
making stdin inaccessible to the program, such that later accesses
result in a panic. This is uncessary, as it'd have been safe to access
stdin during shutdown of the program.
---
This change removes the entire io::lazy module in favour of
SyncOnceCell. SyncOnceCell's fast path is much faster (a single atomic
operation) than locking a sys_common::Mutex on every access like Lazy
did.
However, SyncOnceCell does not use atexit() to drop the contained object
during shutdown.
As noted above, this is not a problem for stdin. It simply means stdin
is now usable during shutdown.
The atexit() call for stdout is moved to the stdio module. Unlike the
now-removed Lazy struct, SyncOnceCell does not have a 'gone and
unusable' state that panics. Instead of adding this again, this simply
replaces the buffer with one with zero capacity. This effectively
flushes the old buffer *and* makes any writes afterwards pass through
directly without touching a buffer, making print!() available during
shutdown without panicking.