Use WASM's saturating casts if they are available
WebAssembly supports saturating floating point to integer casts behind a target feature. The feature is already available on many browsers. Beginning with 1.45 Rust will start defining the behavior of floating point to integer casts to be saturating as well. For this Rust constructs additional checks on top of the `fptoui` / `fptosi` instructions it emits. Here we introduce the possibility for the codegen backend to construct saturating casts itself and only fall back to constructing the checks ourselves if that is not possible.
Resolves part of #73591
WebAssembly supports saturating floating point to integer casts behind a
target feature. The feature is already available on many browsers.
Beginning with 1.45 Rust will start defining the behavior of floating
point to integer casts to be saturating as well. For this Rust
constructs additional checks on top of the `fptoui` / `fptosi`
instructions it emits. Here we introduce the possibility for the codegen
backend to construct saturating casts itself and only fall back to
constructing the checks ourselves if that is not possible.
added regions with counter expressions and counters.
Added codegen_llvm/coverageinfo mod for upcoming coverage map
Move coverage region collection to CodegenCx finalization
Moved from `query coverageinfo` (renamed from `query coverage_data`),
as discussed in the PR at:
https://github.com/rust-lang/rust/pull/73684#issuecomment-649882503
Address merge conflict in MIR instrument_coverage test
The MIR test output format changed for int types.
moved debug messages out of block.rs
This makes the block.rs calls to add coverage mapping data to the
CodegenCx much more concise and readable.
move coverage intrinsic handling into llvm impl
I realized that having half of the coverage intrinsic handling in
`rustc_codegen_ssa` and half in `rustc_codegen_llvm` meant that any
non-llvm backend would be bound to the same decisions about how the
coverage-related MIR terminators should be handled.
To fix this, I moved the non-codegen portion of coverage intrinsic
handling into its own trait, and implemented it in `rustc_codegen_llvm`
alongside `codegen_intrinsic_call`.
I also added the (required?) stubs for the new intrinsics to
`IntrepretCx::emulate_intrinsic()`, to ensure calls to this function do
not fail if called with these new but known intrinsics.
address PR Feedback on 28 June 2020 2:48pm PDT
This initial version only injects counters at the top of each function.
Rust Coverage will require injecting additional counters at each
conditional code branch.
Optimize catch_unwind to match C++ try/catch
This refactors the implementation of catching unwinds to allow LLVM to inline the "try" closure directly into the happy path, avoiding indirection. This means that the catch_unwind implementation is (after this PR) zero-cost unless a panic is thrown.
https://rust.godbolt.org/z/cZcUSB is an example of the current codegen in a simple case. Notably, the codegen is *exactly the same* if `-Cpanic=abort` is passed, which is clearly not great.
This PR, on the other hand, generates the following assembly:
```asm
# -Cpanic=unwind:
push rbx
mov ebx,0x2a
call QWORD PTR [rip+0x1c53c] # <happy>
mov eax,ebx
pop rbx
ret
mov rdi,rax
call QWORD PTR [rip+0x1c537] # cleanup function call
call QWORD PTR [rip+0x1c539] # <unfortunate>
mov ebx,0xd
mov eax,ebx
pop rbx
ret
# -Cpanic=abort:
push rax
call QWORD PTR [rip+0x20a1] # <happy>
mov eax,0x2a
pop rcx
ret
```
Fixes#64224, and resolves#64222.
This patch enables rustc to emit the required LLVM module flags to enable Control Flow Guard metadata (cfguard=1) or metadata and checks (cfguard=2). The LLVM module flags are ignored on unsupported targets and operating systems.
This commit builds on #65501 continue to simplify the build system and
compiler now that we no longer have multiple LLVM backends to ship by
default. Here this switches the compiler back to what it once was long
long ago, which is linking LLVM directly to the compiler rather than
dynamically loading it at runtime. The `codegen-backends` directory of
the sysroot no longer exists and all relevant support in the build
system is removed. Note that `rustc` still supports a dynamically loaded
codegen backend as it did previously, it just no longer supports
dynamically loaded codegen backends in its own sysroot.
Additionally as part of this the `librustc_codegen_llvm` crate now once
again explicitly depends on all of its crates instead of implicitly
loading them through the sysroot. This involved filling out its
`Cargo.toml` and deleting all the now-unnecessary `extern crate`
annotations in the header of the crate. (this in turn required adding a
number of imports for names of macros too).
The end results of this change are:
* Rustbuild's build process for the compiler as all the "oh don't forget
the codegen backend" checks can be easily removed.
* Building `rustc_codegen_llvm` is much simpler since it's simply
another compiler crate.
* Managing the dependencies of `rustc_codegen_llvm` is much simpler since
it's "just another `Cargo.toml` to edit"
* The build process should be a smidge faster because there's more
parallelism in the main rustc build step rather than splitting
`librustc_codegen_llvm` out to its own step.
* The compiler is expected to be slightly faster by default because the
codegen backend does not need to be dynamically loaded.
* Disabling LLVM as part of rustbuild is still supported, supporting
multiple codegen backends is still supported, and dynamic loading of a
codegen backend is still supported.
As of LLVM 9, this is required for 32-bit PowerPC to properly generate
PLT references. Previously, only BigPIC was supported; now LLVM supports
both BigPIC and SmallPIC, and there is no default value provided.
Add llvm.sideeffect to potential infinite loops and recursions
LLVM assumes that a thread will eventually cause side effect. This is
not true in Rust if a loop or recursion does nothing in its body,
causing undefined behavior even in common cases like `loop {}`.
Inserting llvm.sideeffect fixes the undefined behavior.
As a micro-optimization, only insert llvm.sideeffect when jumping back
in blocks or calling a function.
A patch for LLVM is expected to allow empty non-terminate code by
default and fix this issue from LLVM side.
https://github.com/rust-lang/rust/issues/28728
**UPDATE:** [Mentoring instructions here](https://github.com/rust-lang/rust/pull/59546#issuecomment-515072429) to unstall this PR
LLVM assumes that a thread will eventually cause side effect. This is
not true in Rust if a loop or recursion does nothing in its body,
causing undefined behavior even in common cases like `loop {}`.
Inserting llvm.sideeffect fixes the undefined behavior.
As a micro-optimization, only insert llvm.sideeffect when jumping back
in blocks or calling a function.
A patch for LLVM is expected to allow empty non-terminate code by
default and fix this issue from LLVM side.
https://github.com/rust-lang/rust/issues/28728