Currently, deriving on packed structs has some non-trivial limitations,
related to the fact that taking references on unaligned fields is UB.
The current approach to field accesses in derived code:
- Normal case: `&self.0`
- In a packed struct that derives `Copy`: `&{self.0}`
- In a packed struct that doesn't derive `Copy`: `&self.0`
Plus, we disallow deriving any builtin traits other than `Default` for any
packed generic type, because it's possible that there might be
misaligned fields. This is a fairly broad restriction.
Plus, we disallow deriving any builtin traits other than `Default` for most
packed types that don't derive `Copy`. (The exceptions are those where the
alignments inherently satisfy the packing, e.g. in a type with
`repr(packed(N))` where all the fields have alignments of `N` or less
anyway. Such types are pretty strange, because the `packed` attribute is
not having any effect.)
This commit introduces a new, simpler approach to field accesses:
- Normal case: `&self.0`
- In a packed struct: `&{self.0}`
In the latter case, this requires that all fields impl `Copy`, which is
a new restriction. This means that the following example compiles under
the old approach and doesn't compile under the new approach.
```
#[derive(Debug)]
struct NonCopy(u8);
#[derive(Debug)
#[repr(packed)]
struct MyType(NonCopy);
```
(Note that the old approach's support for cases like this was brittle.
Changing the `u8` to a `u16` would be enough to stop it working. So not
much capability is lost here.)
However, the other constraints from the old rules are removed. We can now
derive builtin traits for packed generic structs like this:
```
trait Trait { type A; }
#[derive(Hash)]
#[repr(packed)]
pub struct Foo<T: Trait>(T, T::A);
```
To allow this, we add a `T: Copy` bound in the derived impl and a `T::A:
Copy` bound in where clauses. So `T` and `T::A` must impl `Copy`.
We can now also derive builtin traits for packed structs that don't derive
`Copy`, so long as the fields impl `Copy`:
```
#[derive(Hash)]
#[repr(packed)]
pub struct Foo(u32);
```
This includes types that hand-impl `Copy` rather than deriving it, such as the
following, that show up in winapi-0.2:
```
#[derive(Clone)]
#[repr(packed)]
struct MyType(i32);
impl Copy for MyType {}
```
The new approach is simpler to understand and implement, and it avoids
the need for the `unsafe_derive_on_repr_packed` check.
One exception is required for backwards-compatibility: we allow `[u8]`
fields for now. There is a new lint for this,
`byte_slice_in_packed_struct_with_derive`.
Output tree representation on thir-tree
The current output of `-Zunpretty=thir-tree` is really cumbersome to work with, using an actual tree representation should make it easier to see what the thir looks like.
Skip possible where_clause_object_safety lints when checking `multiple_supertrait_upcastable`
Fix#106247
To achieve this, I lifted the `WhereClauseReferencesSelf` out from `object_safety_violations` and move it into `is_object_safe` (which is changed to a new query).
cc `@dtolnay`
r? `@compiler-errors`
make `output_filenames` a real query
part of #105462
This may be a perf regression and is not obviously the right way forward. We may store this information in the resolver after freezing it for example.
InstCombine away intrinsic validity assertions
This optimization (currently) fires 246 times on the standard library. It seems to fire hardly at all on the big crates in the benchmark suite. Interesting.
To retrieve these flags rustdoc currently has to mass decode full attributes for items in the whole crate tree, so it's better to pre-compute it in advance.
This is especially for short-term performance of https://github.com/rust-lang/rust/pull/107054 because resolver cannot use memoization of query results yet.
This makes sure that ICEing because of def ids created outside of ast lowering will be able to produce a query backtrace and not cause a double panic because of trying to call the `def_span` query
Rename `normalize_opaque_types` to `reveal_opaque_types_in_bounds`
1. The query name is a bit misleading, since it doesn't do any associated type normalization, and
2. since it only takes a predicate list, it sounds a bit more powerful than it actually is.
Initial pass at expr/abstract const/s
Address comments
Switch to using a list instead of &[ty::Const], rm `AbstractConst`
Remove try_unify_abstract_consts
Update comments
Add edits
Recurse more
More edits
Prevent equating associated consts
Move failing test to ui
Changes this test from incremental to ui, and mark it as failing and a known bug.
Does not cause the compiler to ICE, so should be ok.