reject aarch64 target feature toggling that would change the float ABI
~~Stacked on top of https://github.com/rust-lang/rust/pull/133099. Only the last two commits are new.~~
The first new commit lays the groundwork for separately controlling whether a feature may be enabled or disabled. The second commit uses that to make it illegal to *disable* the `neon` feature (which is only possible via `-Ctarget-feature`, and so the new check just adds a warning). Enabling the `neon` feature remains allowed on targets that don't disable `neon` or `fp-armv8`, which is all our built-in targets. This way, the entire PR is not a breaking change.
Fixes https://github.com/rust-lang/rust/issues/131058 for hardfloat targets (together with https://github.com/rust-lang/rust/pull/133102 which fixed it for softfloat targets).
Part of https://github.com/rust-lang/rust/issues/116344.
Rollup of 6 pull requests
Successful merges:
- #133221 (Add external macros specific diagnostics for check-cfg)
- #133386 (Update linux_musl base to dynamically link the crt by default)
- #134191 (Make some types and methods related to Polonius + Miri public)
- #134227 (Update wasi-sdk used to build WASI targets)
- #134279 ((Re-)return adjustment target if adjust kind is never-to-any)
- #134295 (Encode coroutine-closures in SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Update linux_musl base to dynamically link the crt by default
However, don't change the behavior of any existing targets at this time. For targets that used the old default, explicitly set `crt_static_default = true`.
This makes it easier for new targets to use the correct defaults while leaving the changing of individual targets to future PRs.
Related to https://github.com/rust-lang/compiler-team/issues/422
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
ABI checks: add support for loongarch
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
r? `@workingjubilee`
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose
registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
rustc_target: ppc64 target string fixes for LLVM 20
LLVM continues to clean these up, and we continue to make this consistent. This is similar to 9caced7bad, e985396145, and
a10e744faf.
```@rustbot``` label: +llvm-main
LLVM continues to clean these up, and we continue to make this
consistent. This is similar to 9caced7bad,
e985396145, and
a10e744faf.
`@rustbot` label: +llvm-main
rust_for_linux: -Zreg-struct-return commandline flag for X86 (#116973)
Command line flag `-Zreg-struct-return` for X86 (32-bit) for rust-for-linux.
This flag enables the same behavior as the `abi_return_struct_as_int` target spec key.
- Tracking issue: https://github.com/rust-lang/rust/issues/116973
Mark visionOS as supporting `std`
Cargo's -Zbuild-std has recently started checking this field, which causes it to fail to compile even though we have full support for the standard library on these targets.
[Example of failed build](3365543062).
Affected targets: `aarch64-apple-visionos` and `aarch64-apple-visionos-sim`.
r? Noratrieb (because you've worked with `rustc` target metadata IIRC)
``@rustbot`` label O-visionos
Support input/output in vector registers of PowerPC inline assembly
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types as input/output.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| PowerPC | `vreg` | `altivec` | `i8x16`, `i16x8`, `i32x4`, `f32x4` |
| PowerPC | `vreg` | `vsx` | `f32`, `f64`, `i64x2`, `f64x2` |
In addition to floats and `core::simd` types listed above, `core::arch` types and custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types and relevant target features are currently unstable.
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
Add `+forced-atomics` feature to esp32s2 no_std target
Similar to https://github.com/rust-lang/rust/pull/114499 but for the Xtensa backend. The ESP32-S2 doesn't have native atomic support, but can have atomic load/stores as part of the ISA with this LLVM codegen feature.
Note: The current rev of LLVM that rustc is using doesn't contain the `+forced-atomics` feature for Xtensa, but I'm pushing this now to remove the patch from our fork in `esp-rs/rust`.
r? ``@Amanieu`` because you reviewed the related RISC-V PR
Fix target_feature handling in freg of LoongArch inline assembly
In LoongArch inline assembly, freg currently always accepts f32/f64 as input/output.
9b4d7c6a40/compiler/rustc_target/src/asm/loongarch.rs (L41)
However, these types actually require f/d target features as in RISC-V.
Otherwise, an (ugly) compile error will occur: https://godbolt.org/z/K61Gq1E9E
f32/f64 without f:
```
error: couldn't allocate output register for constraint '{$f1}'
--> <source>:12:11
|
12 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
f64 with f but without d:
```
error: scalar-to-vector conversion failed, possible invalid constraint for vector type
--> <source>:19:11
|
19 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
cc ``@heiher``
r? ``@Amanieu``
``@rustbot`` label +O-LoongArch +A-inline-assembly
Support `clobber_abi` in AVR inline assembly
This PR implements the `clobber_abi` part necessary to eventually stabilize the inline assembly for AVR. This is tracked in #93335.
This is heavily inspired by the sibling-PR #131310 for the MSP430. I've explained my reasoning in the first commit message in detail, which is reproduced below for easier reviewing:
This follows the [ABI documentation] of AVR-GCC:
> The [...] call-clobbered general purpose registers (GPRs) are registers that might be destroyed (clobbered) by a function call.
>
> - **R18–R27, R30, R31**
>
> These GPRs are call clobbered. An ordinary function may use them without restoring the contents. [...]
>
> - **R0, T-Flag**
>
> The temporary register and the T-flag in SREG are also call-clobbered, but this knowledge is not exposed explicitly to the compiler (R0 is a fixed register).
Therefore this commit lists the aforementioned registers `r18–r27`, `r30` and `r31` as clobbered registers. Since the `r0` register (listed above as well) is not available in inline assembly at all (potentially because the AVR-GCC considers it a fixed register causing the register to never be used in register allocation and LLVM adopting this), there is no need to list it in the clobber list (the `r0`-variant is not even available). A comment was added to ensure, that the `r0` gets added to the clobber-list once the register gets usable in inline ASM.
Since the SREG is normally considered clobbered anyways (unless the user supplies the `preserve_flags`-option), there is no need to explicitly list a bit in this register (which is not possible to list anyways).
Note, that this commit completely ignores the case of interrupts (that are described in the ABI-specification), since every register touched in an ISR need to be saved anyways.
[ABI documentation]: https://gcc.gnu.org/wiki/avr-gcc#Call-Used_Registers
r? ``@Amanieu``
``@rustbot`` label +O-AVR
ensure JSON-defined targets are consistent
We have a `check_consistency` check that ensures some invariants which (presumably) the rest of the compiler relies on. However, JSON targets can easily be written in a way that violates those invariants. So this PR applies the same consistency check to JSON targets that we already enforce for built-in targets.
I have converted many of the assertions in that function to new macros that show a nice error instead of a panic; if people are okay with the general approach here, I can do that for the rest of the checks as well.
This commit adds the relevant registers to the list of clobbered regis-
ters (part of #93335). This follows the [ABI documentation] of AVR-GCC:
> The [...] call-clobbered general purpose registers (GPRs) are
> registers that might be destroyed (clobbered) by a function call.
>
> - **R18–R27, R30, R31**
>
> These GPRs are call clobbered. An ordinary function may use them
> without restoring the contents. [...]
>
> - **R0, T-Flag**
>
> The temporary register and the T-flag in SREG are also call-
> clobbered, but this knowledge is not exposed explicitly to the
> compiler (R0 is a fixed register).
Therefore this commit lists the aforementioned registers `r18–r27`,
`r30` and `r31` as clobbered registers. Since the `r0` register (listed
above as well) is not available in inline assembly at all (potentially
because the AVR-GCC considers it a fixed register causing the register
to never be used in register allocation and LLVM adopting this), there
is no need to list it in the clobber list (the `r0`-variant is not even
available). A comment was added to ensure, that the `r0` gets added to
the clobber-list once the register gets usable in inline ASM.
Since the SREG is normally considered clobbered anyways (unless the user
supplies the `preserve_flags`-option), there is no need to explicitly
list a bit in this register (which is not possible to list anyways).
Note, that this commit completely ignores the case of interrupts (that
are described in the ABI-specification), since every register touched in
an ISR need to be saved anyways.
[ABI documentation]: https://gcc.gnu.org/wiki/avr-gcc#Call-Used_Registers
Cargo's -Zbuild-std has recently started checking this field, which
causes it to fail to compile even though we have full support for the
standard library on these targets.
Fix clobber_abi in RV32E and RV64E inline assembly
Currently clobber_abi in RV32E and RV64E inline assembly is implemented using InlineAsmClobberAbi::RiscV, but broken since x16-x31 cannot be used in RV32E and RV64E.
```
error: cannot use register `x16`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x17`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x28`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x29`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x30`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x31`: register can't be used with the `e` target feature
--> <source>:42:14
|
42 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
```
r? `@Amanieu`
`@rustbot` label O-riscv +A-inline-assembly