LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose
registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
Rename `projection_def_id` to `item_def_id`
Renames `projection_def_id` to `item_def_id`, since `item_def_id` is what we call the analogous method for ~~`AliasTerm`/`AliasTy`~~ `PolyExistentialProjection`. I keep forgetting that this one is not called `item_def_id`.
Rudimentary heuristic to insert parentheses when needed for RPIT overcaptures lint
We don't have basically any preexisting machinery to detect when parentheses are needed for *types*. AFAICT, all of the diagnostics we have for opaques just... fail when they suggest `+ 'a` when that's ambiguous.
Fixes#132853
[AIX] keep profile-rt symbol alive
Clang passes `-u __llvm_profile_runtime` on AIX. https://reviews.llvm.org/D136192
We want to preserve the symbol in the case there are no instrumented object files.
Exercise const trait interaction with default fields
Add a test case for using the result of a fn call of an associated function of a `const` trait in a struct default field.
```rust
struct X;
trait Trait {
fn value() -> Self;
}
impl const Trait for X {
fn value() -> Self { X }
}
struct S<T: const Trait> {
a: T = T::value(),
}
```
Validate self in host predicates correctly
`assert_only_contains_predicates_from` was added to make sure that we are computing predicates for the correct self type for a given `PredicateFilter`. That was not implemented correctly for `PredicateFilter::SelfOnly` when there are const predicates.
Fixes#133526
`rustc_mir_dataflow` has a typedef `AbstractElem` that is equal to
`ProjectionElem<AbstractOperand, AbstractType>`. `AbstractOperand` and
`AbstractType` are both unit types. There is also has a trait `Lift` to
convert a `PlaceElem` to an `AbstractElem`.
But `rustc_mir_middle` already has a typedef `ProjectionKind` that is
equal to `ProjectionElem<(), ()>`, which is equivalent to
`AbstractElem`. So this commit reuses `ProjectionKind` in
`rustc_mir_dataflow`, removes `AbstractElem`, and simplifies the `Lift`
trait.
we get these declarations
```
; opt level 0
declare x86_intrcc void @page_fault_handler(ptr byval([8 x i8]) align 8, i64) unnamed_addr #1
; opt level > 0
declare x86_intrcc void @page_fault_handler(ptr noalias nocapture noundef byval([8 x i8]) align 8 dereferenceable(8), i64 noundef) unnamed_addr #1
```
The space after `i64` in the original regex made the regex not match for
opt level 0. Removing the space fixes the issue.
```
declare x86_intrcc void @page_fault_handler(ptr {{.*}}, i64 {{.*}}){{.*}}#[[ATTRS:[0-9]+]]
```
rustc_target: ppc64 target string fixes for LLVM 20
LLVM continues to clean these up, and we continue to make this consistent. This is similar to 9caced7bad, e985396145, and
a10e744faf.
```@rustbot``` label: +llvm-main
Add the `power8-crypto` target feature
Add the `power8-crypto` target feature. This will enable adding some new PPC intrinsics in stdarch (specifically AES, SHA and CLMUL intrinsics). The implied target feature is from [here](https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/PowerPC/PPC.td)
```@rustbot``` label A-target-feature O-PowerPC
When we expand a `mod foo;` and parse `foo.rs`, we now track whether that file had an unrecovered parse error that reached the end of the file. If so, we keep that information around. When resolving a path like `foo::bar`, we do not emit any errors for "`bar` not found in `foo`", as we know that the parse error might have caused `bar` to not be parsed and accounted for.
When this happens in an existing project, every path referencing `foo` would be an irrelevant compile error. Instead, we now skip emitting anything until `foo.rs` is fixed. Tellingly enough, we didn't have any test for errors caused by `mod` expansion.
Fix#97734.