Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
Detect more cases of `=` to `:` typo
When a `Local` is fully parsed, but not followed by a `;`, keep the `:` span arround and mention it. If the type could continue being parsed as an expression, suggest replacing the `:` with a `=`.
```
error: expected one of `!`, `+`, `->`, `::`, `;`, or `=`, found `.`
--> file.rs:2:32
|
2 | let _: std::env::temp_dir().join("foo");
| - ^ expected one of `!`, `+`, `->`, `::`, `;`, or `=`
| |
| while parsing the type for `_`
| help: use `=` if you meant to assign
```
Fix#119665.
When a `Local` is fully parsed, but not followed by a `;`, keep the `:` span
arround and mention it. If the type could continue being parsed as an
expression, suggest replacing the `:` with a `=`.
```
error: expected one of `!`, `+`, `->`, `::`, `;`, or `=`, found `.`
--> file.rs:2:32
|
2 | let _: std::env::temp_dir().join("foo");
| - ^ expected one of `!`, `+`, `->`, `::`, `;`, or `=`
| |
| while parsing the type for `_`
| help: use `=` if you meant to assign
```
Fix#119665.
Stashed errors used to be counted as errors, but could then be
cancelled, leading to `ErrorGuaranteed` soundness holes. #120828 changed
that, closing the soundness hole. But it introduced other difficulties
because you sometimes have to account for pending stashed errors when
making decisions about whether errors have occured/will occur and it's
easy to overlook these.
This commit aims for a middle ground.
- Stashed errors (not warnings) are counted immediately as emitted
errors, avoiding the possibility of forgetting to consider them.
- The ability to cancel (or downgrade) stashed errors is eliminated, by
disallowing the use of `steal_diagnostic` with errors, and introducing
the more restrictive methods `try_steal_{modify,replace}_and_emit_err`
that can be used instead.
Other things:
- `DiagnosticBuilder::stash` and `DiagCtxt::stash_diagnostic` now both
return `Option<ErrorGuaranteed>`, which enables the removal of two
`delayed_bug` calls and one `Ty::new_error_with_message` call. This is
possible because we store error guarantees in
`DiagCtxt::stashed_diagnostics`.
- Storing the guarantees also saves us having to maintain a counter.
- Calls to the `stashed_err_count` method are no longer necessary
alongside calls to `has_errors`, which is a nice simplification, and
eliminates two more `span_delayed_bug` calls and one FIXME comment.
- Tests are added for three of the four fixed PRs mentioned below.
- `issue-121108.rs`'s output improved slightly, omitting a non-useful
error message.
Fixes#121451.
Fixes#121477.
Fixes#121504.
Fixes#121508.
Add newtypes for bool fields/params/return types
Fixed all the cases of this found with some simple searches for `*/ bool` and `bool /*`; probably many more
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
Be more careful about interpreting a label/lifetime as a mistyped char literal.
Currently the parser interprets any label/lifetime in certain positions as a mistyped char literal, on the assumption that the trailing single quote was accidentally omitted. In such cases it gives an error with a suggestion to add the trailing single quote, and then puts the appropriate char literal into the AST. This behaviour was introduced in #101293.
This is reasonable for a case like this:
```
let c = 'a;
```
because `'a'` is a valid char literal. It's less reasonable for a case like this:
```
let c = 'abc;
```
because `'abc'` is not a valid char literal.
Prior to #120329 this could result in some sub-optimal suggestions in error messages, but nothing else. But #120329 changed `LitKind::from_token_lit` to assume that the char/byte/string literals it receives are valid, and to assert if not. This is reasonable because the lexer does not produce invalid char/byte/string literals in general. But in this "interpret label/lifetime as unclosed char literal" case the parser can produce an invalid char literal with contents such as `abc`, which triggers an assertion failure.
This PR changes the parser so it's more cautious about interpreting labels/lifetimes as unclosed char literals.
Fixes#120397.
r? `@compiler-errors`
Currently the parser will interpret any label/lifetime in certain
positions as a mistyped char literal, on the assumption that the
trailing single quote was accidentally omitted. This is reasonable for a
something like 'a (because 'a' would be valid) but not reasonable for a
something like 'abc (because 'abc' is not valid).
This commit restricts this behaviour only to labels/lifetimes that would
be valid char literals, via the new `could_be_unclosed_char_literal`
function. The commit also augments the `label-is-actually-char.rs` test
in a couple of ways:
- Adds testing of labels/lifetimes with identifiers longer than one
char, e.g. 'abc.
- Adds a new match with simpler patterns, because the
`recover_unclosed_char` call in `parse_pat_with_range_pat` was not
being exercised (in this test or any other ui tests).
Fixes#120397, an assertion failure, which was caused by this behaviour
in the parser interacting with some new stricter char literal checking
added in #120329.
Remove special handling of `box` expressions from parser
#108471 added a temporary hack to parse `box expr`. It's been almost a year since then, so I think it's safe to remove the special handling.
As a drive-by cleanup, move `parser/removed-syntax*` tests to their own directory.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
Instead of taking `seq` as a mutable reference,
`maybe_recover_struct_lit_bad_delims` now consumes `seq` on the recovery
path, and returns `seq` unchanged on the non-recovery path. The commit
also combines an `if` and a `match` to merge two identical paths.
Also change `recover_seq_parse_error` so it receives a `PErr` instead of
a `PResult`, because all the call sites now handle the `Ok`/`Err`
distinction themselves.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.