This is a convenience feature for cases in which "no value in the table" and "default value in the table" are equivalent.
Tables using `Table<DefIndex, ()>` are migrated in this PR, some other cases can be migrated later.
This helps `DocFlags` in https://github.com/rust-lang/rust/pull/107136 in particular.
To retrieve these flags rustdoc currently has to mass decode full attributes for items in the whole crate tree, so it's better to pre-compute it in advance.
This is especially for short-term performance of https://github.com/rust-lang/rust/pull/107054 because resolver cannot use memoization of query results yet.
Use UnordMap and UnordSet for id collections (DefIdMap, LocalDefIdMap, etc)
This PR changes the `rustc_data_structures::define_id_collections!` macro to use `UnordMap` and `UnordSet` instead of `FxHashMap` and `FxHashSet`. This should account for a large portion of hash-maps being used in places where they can cause trouble.
The changes required are moderate but non-zero:
- In some places the collections are extracted into sorted vecs.
- There are a few instances where for-loops have been changed to extends.
~~Let's see what the performance impact is. With a bit more refactoring, we might be able to get rid of some of the additional sorting -- but the change set is already big enough. Unless there's a performance impact, I'd like to do further changes in subsequent PRs.~~
Performance does not seem to be negatively affected ([perf-run here](https://github.com/rust-lang/rust/pull/106977#issuecomment-1396776699)).
Part of [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
r? `@ghost`
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).
Get rid of native_library projection queries
They don't seem particularly useful as I don't expect native libraries to change frequently.
Maybe they do provide significant value of keeping incremental compilation green though, I'm not sure.
indirect immutable freeze by-value function parameters.
Right now, `rustc` only examines function signatures and the platform ABI when
determining the LLVM attributes to apply to parameters. This results in missed
optimizations, because there are some attributes that can be determined via
analysis of the MIR making up the function body. In particular, `readonly`
could be applied to most indirectly-passed by-value function arguments
(specifically, those that are freeze and are observed not to be mutated), but
it currently is not.
This patch introduces the machinery that allows `rustc` to determine those
attributes. It consists of a query, `deduced_param_attrs`, that, when
evaluated, analyzes the MIR of the function to determine supplementary
attributes. The results of this query for each function are written into the
crate metadata so that the deduced parameter attributes can be applied to
cross-crate functions. In this patch, we simply check the parameter for
mutations to determine whether the `readonly` attribute should be applied to
parameters that are indirect immutable freeze by-value. More attributes could
conceivably be deduced in the future: `nocapture` and `noalias` come to mind.
Adding `readonly` to indirect function parameters where applicable enables some
potential optimizations in LLVM that are discussed in [issue 103103] and [PR
103070] around avoiding stack-to-stack memory copies that appear in functions
like `core::fmt::Write::write_fmt` and `core::panicking::assert_failed`. These
functions pass a large structure unchanged by value to a subfunction that also
doesn't mutate it. Since the structure in this case is passed as an indirect
parameter, it's a pointer from LLVM's perspective. As a result, the
intermediate copy of the structure that our codegen emits could be optimized
away by LLVM's MemCpyOptimizer if it knew that the pointer is `readonly
nocapture noalias` in both the caller and callee. We already pass `nocapture
noalias`, but we're missing `readonly`, as we can't determine whether a
by-value parameter is mutated by examining the signature in Rust. I didn't have
much success with having LLVM infer the `readonly` attribute, even with fat
LTO; it seems that deducing it at the MIR level is necessary.
No large benefits should be expected from this optimization *now*; LLVM needs
some changes (discussed in [PR 103070]) to more aggressively use the `noalias
nocapture readonly` combination in its alias analysis. I have some LLVM patches
for these optimizations and have had them looked over. With all the patches
applied locally, I enabled LLVM to remove all the `memcpy`s from the following
code:
```rust
fn main() {
println!("Hello {}", 3);
}
```
which is a significant codegen improvement over the status quo. I expect that
if this optimization kicks in in multiple places even for such a simple
program, then it will apply to Rust code all over the place.
[issue 103103]: https://github.com/rust-lang/rust/issues/103103
[PR 103070]: https://github.com/rust-lang/rust/pull/103070
Remove separate indexing of early-bound regions
~Based on https://github.com/rust-lang/rust/pull/99728.~
This PR copies some modifications from https://github.com/rust-lang/rust/pull/97839 around object lifetime defaults.
These modifications allow to stop counting generic parameters during lifetime resolution, and rely on the indexing given by `rustc_typeck::collect`.
Lazily decode SourceFile from metadata
Currently, source files from foreign crates are decoded up-front from metadata.
Spans from those crates were matched with the corresponding source using binary search among those files.
This PR changes the strategy by matching spans to files during encoding. This allows to decode source files on-demand, instead of up-front. The on-disk format for spans becomes: `<tag> <position from start of file> <length> <file index> <crate (if foreign file)>`.
Implement `#[rustc_default_body_unstable]`
This PR implements a new stability attribute — `#[rustc_default_body_unstable]`.
`#[rustc_default_body_unstable]` controls the stability of default bodies in traits.
For example:
```rust
pub trait Trait {
#[rustc_default_body_unstable(feature = "feat", isssue = "none")]
fn item() {}
}
```
In order to implement `Trait` user needs to either
- implement `item` (even though it has a default implementation)
- enable `#![feature(feat)]`
This is useful in conjunction with [`#[rustc_must_implement_one_of]`](https://github.com/rust-lang/rust/pull/92164), we may want to relax requirements for a trait, for example allowing implementing either of `PartialEq::{eq, ne}`, but do so in a safe way — making implementation of only `PartialEq::ne` unstable.
r? `@Aaron1011`
cc `@nrc` (iirc you were interested in this wrt `read_buf`), `@danielhenrymantilla` (you were interested in the related `#[rustc_must_implement_one_of]`)
P.S. This is my first time working with stability attributes, so I'm not sure if I did everything right 😅
This attribute allows to mark default body of a trait function as
unstable. This means that implementing the trait without implementing
the function will require enabling unstable feature.
This is useful in conjunction with `#[rustc_must_implement_one_of]`,
we may want to relax requirements for a trait, for example allowing
implementing either of `PartialEq::{eq, ne}`, but do so in a safe way
-- making implementation of only `PartialEq::ne` unstable.
Improves the diagnostic when a feature attribute is specified
unnecessarily but the feature implies another (i.e. it was partially
stabilized) to refer to the implied feature.
Signed-off-by: David Wood <david.wood@huawei.com>
Fix FFI-unwind unsoundness with mixed panic mode
UB maybe introduced when an FFI exception happens in a `C-unwind` foreign function and it propagates through a crate compiled with `-C panic=unwind` into a crate compiled with `-C panic=abort` (#96926).
To prevent this unsoundness from happening, we will disallow a crate compiled with `-C panic=unwind` to be linked into `panic-abort` *if* it contains a call to `C-unwind` foreign function or function pointer. If no such call exists, then we continue to allow such mixed panic mode linking because it's sound (and stable). In fact we still need the ability to do mixed panic mode linking for std, because we only compile std once with `-C panic=unwind` and link it regardless panic strategy.
For libraries that wish to remain compile-once-and-linkable-to-both-panic-runtimes, a `ffi_unwind_calls` lint is added (gated under `c_unwind` feature gate) to flag any FFI unwind calls that will cause the linkable panic runtime be restricted.
In summary:
```rust
#![warn(ffi_unwind_calls)]
mod foo {
#[no_mangle]
pub extern "C-unwind" fn foo() {}
}
extern "C-unwind" {
fn foo();
}
fn main() {
// Call to Rust function is fine regardless ABI.
foo::foo();
// Call to foreign function, will cause the crate to be unlinkable to panic-abort if compiled with `-Cpanic=unwind`.
unsafe { foo(); }
//~^ WARNING call to foreign function with FFI-unwind ABI
let ptr: extern "C-unwind" fn() = foo::foo;
// Call to function pointer, will cause the crate to be unlinkable to panic-abort if compiled with `-Cpanic=unwind`.
ptr();
//~^ WARNING call to function pointer with FFI-unwind ABI
}
```
Fix#96926
`@rustbot` label: T-compiler F-c_unwind
The current code is a basis for `is_const_fn_raw`, and `impl_constness`
is no longer a valid name, which is previously used for determining the
constness of impls, and not items in general.
Cleanup `DebuggerVisualizerFile` type and other minor cleanup of queries.
Merge the queries for debugger visualizers into a single query.
Revert move of `resolve_path` to `rustc_builtin_macros`. Update dependencies in Cargo.toml for `rustc_passes`.
Respond to PR comments. Load visualizer files into opaque bytes `Vec<u8>`. Debugger visualizers for dynamically linked crates should not be embedded in the current crate.
Update the unstable book with the new feature. Add the tracking issue for the debugger_visualizer feature.
Respond to PR comments and minor cleanups.
Generate synthetic object file to ensure all exported and used symbols participate in the linking
Fix#50007 and #47384
This is the synthetic object file approach that I described in https://github.com/rust-lang/rust/pull/95363#issuecomment-1079932354, allowing all exported and used symbols to be linked while still allowing them to be GCed.
Related #93791, #95363
r? `@petrochenkov`
cc `@carbotaniuman`
Stop using CRATE_DEF_INDEX outside of metadata encoding.
`CRATE_DEF_ID` and `CrateNum::as_def_id` are almost always what we want. We should not manipulate raw `DefIndex` outside of metadata encoding.