This commit adds the needed modifications to compile the std crate
for the L4 Runtime environment (L4Re).
A target for the L4Re was introduced in commit:
c151220a84
In many aspects implementations for linux also apply for the L4Re
microkernel.
Two uncommon characteristics had to be resolved:
* L4Re has no network funktionality
* L4Re has a maximum stacksize of 1Mb for threads
Co-authored-by: Sebastian Humenda <sebastian.humenda@tu-dresden.de>
* Match definition of c_char in os/raw.rs with the libc definition
Due to historic reasons, os/raw.rs redefines types for c_char from
libc, but these didn't match. Now they do :).
* Enable signal reset on exec for L4Re
L4Re has full signal emulation and hence it needs to reset the
signal set of the child with sigemptyset. However, gid and uid
should *not* be set.
This PR is an implementation of [RFC 1974] which specifies a new method of
defining a global allocator for a program. This obsoletes the old
`#![allocator]` attribute and also removes support for it.
[RFC 1974]: https://github.com/rust-lang/rfcs/pull/197
The new `#[global_allocator]` attribute solves many issues encountered with the
`#![allocator]` attribute such as composition and restrictions on the crate
graph itself. The compiler now has much more control over the ABI of the
allocator and how it's implemented, allowing much more freedom in terms of how
this feature is implemented.
cc #27389
but keep them enabled by default to maintain the status quo.
When disabled shaves ~56KB off every x86_64-unknown-linux-gnu
binary.
To disable backtraces you have to use a config.toml (see
src/bootstrap/config.toml.example for details) when building rustc/std:
$ python bootstrap.py --config=config.toml
Although the set of APIs being stabilized this release is relatively small, the
trains keep going! Listed below are the APIs in the standard library which have
either transitioned from unstable to stable or those from unstable to
deprecated.
Stable
* `BTreeMap::{append, split_off}`
* `BTreeSet::{append, split_off}`
* `Cell::get_mut`
* `RefCell::get_mut`
* `BinaryHeap::append`
* `{f32, f64}::{to_degrees, to_radians}` - libcore stabilizations mirroring past
libstd stabilizations
* `Iterator::sum`
* `Iterator::product`
Deprecated
* `{f32, f64}::next_after`
* `{f32, f64}::integer_decode`
* `{f32, f64}::ldexp`
* `{f32, f64}::frexp`
* `num::One`
* `num::Zero`
Added APIs (all unstable)
* `iter::Sum`
* `iter::Product`
* `iter::Step` - a few methods were added to accomodate deprecation of One/Zero
Removed APIs
* `From<Range<T>> for RangeInclusive<T>` - everything about `RangeInclusive` is
unstable
Closes#27739Closes#27752Closes#32526Closes#33444Closes#34152
cc #34529 (new tracking issue)
The Gecko folks currently use Android API level 9 for their builds, so they're
requesting that we move back our minimum supported API level from 18 to 9. Turns
out, ABI-wise at least, there's not that many changes we need to take care of.
The `ftruncate64` API appeared in android-12 and the `log2` and `log2f` APIs
appeared in android-18. We can have a simple shim for `ftruncate64` which falls
back on `ftruncate` and the `log2` function can be approximated with just
`ln(f) / ln(2)`.
This should at least get the standard library building on API level 9, although
the tests aren't quite happening there just yet. As we seem to be growing a
number of Android compatibility shims, they're now centralized in a common
`sys::android` module.
Here's another go at adding emscripten support. This needs to wait again on new [libc definitions](https://github.com/rust-lang-nursery/libc/pull/122) landing. To get the libc definitions right I had to add support for i686-unknown-linux-musl, which are very similar to emscripten's, which are derived from arm/musl.
This branch additionally removes the makefile dependency on the `EMSCRIPTEN` environment variable by not building the unused compiler-rt.
Again, this is not sufficient for actually compiling to asmjs since it needs additional LLVM patches.
r? @alexcrichton
Backtraces, and the compilation of libbacktrace for asmjs, are disabled.
This port doesn't use jemalloc so, like pnacl, it disables jemalloc *for all targets*
in the configure file.
It disables stack protection.
Right now we only attempt to call one symbol which my not exist everywhere,
__pthread_get_minstack, but this pattern will come up more often as we start to
bind newer functionality of systems like Linux.
Take a similar strategy as the Windows implementation where we use `dlopen` to
lookup whether a symbol exists or not.
* Delete `sys::unix::{c, sync}` as these are now all folded into libc itself
* Update all references to use `libc` as a result.
* Update all references to the new flat namespace.
* Moves all windows bindings into sys::c
This commit does some refactoring to make almost all of the `std::rt` private.
Specifically, the following items are no longer part of its API:
* DEFAULT_ERROR_CODE
* backtrace
* unwind
* args
* at_exit
* cleanup
* heap (this is just alloc::heap)
* min_stack
* util
The module is now tagged as `#[doc(hidden)]` as the only purpose it's serve is
an entry point for the `panic!` macro via the `begin_unwind` and
`begin_unwind_fmt` reexports.
This commit removes all unstable and deprecated functions in the standard
library. A release was recently cut (1.3) which makes this a good time for some
spring cleaning of the deprecated functions.
This commit is an implementation of [RFC 1184][rfc] which tweaks the behavior of
the `#![no_std]` attribute and adds a new `#![no_core]` attribute. The
`#![no_std]` attribute now injects `extern crate core` at the top of the crate
as well as the libcore prelude into all modules (in the same manner as the
standard library's prelude). The `#![no_core]` attribute disables both std and
core injection.
[rfc]: https://github.com/rust-lang/rfcs/pull/1184
Now that `std::old_io` has been removed for quite some time the naming real
estate here has opened up to allow these modules to move back to their proper
names.
This commit is an implementation of [RFC 1044][rfc] which adds additional
surface area to the `std::fs` module. All new APIs are `#[unstable]` behind
assorted feature names for each one.
[rfc]: https://github.com/rust-lang/rfcs/pull/1044
The new APIs added are:
* `fs::canonicalize` - bindings to `realpath` on unix and
`GetFinalPathNameByHandle` on windows.
* `fs::symlink_metadata` - similar to `lstat` on unix
* `fs::FileType` and accessor methods as `is_{file,dir,symlink}`
* `fs::Metadata::file_type` - accessor for the raw file type
* `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows
but requires a syscall on unix.
* `fs::DirEntry::file_type` - access the file type which may not require a
syscall on most platforms.
* `fs::DirEntry::file_name` - access just the file name without leading
components.
* `fs::PathExt::symlink_metadata` - convenience method for the top-level
function.
* `fs::PathExt::canonicalize` - convenience method for the top-level
function.
* `fs::PathExt::read_link` - convenience method for the top-level
function.
* `fs::PathExt::read_dir` - convenience method for the top-level
function.
* `std::os::raw` - type definitions for raw OS/C types available on all
platforms.
* `std::os::$platform` - new modules have been added for all currently supported
platforms (e.g. those more specific than just `unix`).
* `std::os::$platform::raw` - platform-specific type definitions. These modules
are populated with the bare essentials necessary for lowing I/O types into
their raw representations, and currently largely consist of the `stat`
definition for unix platforms.
This commit also deprecates `Metadata::{modified, accessed}` in favor of
inspecting the raw representations via the lowering methods of `Metadata`.
This commit removes all the old casting/generic traits from `std::num` that are
no longer in use by the standard library. This additionally removes the old
`strconv` module which has not seen much use in quite a long time. All generic
functionality has been supplanted with traits in the `num` crate and the
`strconv` module is supplanted with the [rust-strconv crate][rust-strconv].
[rust-strconv]: https://github.com/lifthrasiir/rust-strconv
This is a breaking change due to the removal of these deprecated crates, and the
alternative crates are listed above.
[breaking-change]
This commit stabilizes the `std::num` module:
* The `Int` and `Float` traits are deprecated in favor of (1) the
newly-added inherent methods and (2) the generic traits available in
rust-lang/num.
* The `Zero` and `One` traits are reintroduced in `std::num`, which
together with various other traits allow you to recover the most
common forms of generic programming.
* The `FromStrRadix` trait, and associated free function, is deprecated
in favor of inherent implementations.
* A wide range of methods and constants for both integers and floating
point numbers are now `#[stable]`, having been adjusted for integer
guidelines.
* `is_positive` and `is_negative` are renamed to `is_sign_positive` and
`is_sign_negative`, in order to address #22985
* The `Wrapping` type is moved to `std::num` and stabilized;
`WrappingOps` is deprecated in favor of inherent methods on the
integer types, and direct implementation of operations on
`Wrapping<X>` for each concrete integer type `X`.
Closes#22985Closes#21069
[breaking-change]
This commit stabilizes the `ErrorKind` enumeration which is consumed by and
generated by the `io::Error` type. The purpose of this type is to serve as a
cross-platform namespace to categorize errors into. Two specific issues are
addressed as part of this stablization:
* The naming of each variant was scrutinized and some were tweaked. An example
is how `FileNotFound` was renamed to simply `NotFound`. These names should not
show either a Unix or Windows bias and the set of names is intended to grow
over time. For now the names will likely largely consist of those errors
generated by the I/O APIs in the standard library.
* The mapping of OS error codes onto kinds has been altered. Coalescing no
longer occurs (multiple error codes become one kind). It is intended that each
OS error code, if bound, corresponds to only one `ErrorKind`. The current set
of error kinds was expanded slightly to include some networking errors.
This commit also adds a `raw_os_error` function which returns an `Option<i32>`
to extract the underlying raw error code from the `Error`.
This is an implementation of RFC 899 and adds stdio functionality to the new
`std::io` module. Details of the API can be found on the RFC, but from a high
level:
* `io::{stdin, stdout, stderr}` constructors are now available. There are also
`*_raw` variants for unbuffered and unlocked access.
* All handles are globally shared (excluding raw variants).
* The stderr handle is no longer buffered.
* All handles can be explicitly locked (excluding the raw variants).
The `print!` and `println!` machinery has not yet been hooked up to these
streams just yet. The `std::fmt::output` module has also not yet been
implemented as part of this commit.
This affects the `set_non_blocking` function which cannot fail for Unix or
Windows, given correct parameters. Additionally, the short UDP write error case
has been removed as there is no such thing as "short UDP writes", instead, the
operating system will error out if the application tries to send a packet
larger than the MTU of the network path.
This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These
two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type
to the module.
[r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md
[r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md
The new `CStr` type is only constructable via two methods:
1. By `deref`'ing from a `CString`
2. Unsafely via `CStr::from_ptr`
The purpose of `CStr` is to be an unsized type which is a thin pointer to a
`libc::c_char` (currently it is a fat pointer slice due to implementation
limitations). Strings from C can be safely represented with a `CStr` and an
appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr`
instead to allow producers to pass in C-originating strings instead of just
Rust-allocated strings.
A new constructor was added to `CString`, `new`, which takes `T: IntoBytes`
instead of separate `from_slice` and `from_vec` methods (both have been
deprecated in favor of `new`). The `new` method returns a `Result` instead of
panicking. The error variant contains the relevant information about where the
error happened and bytes (if present). Conversions are provided to the
`io::Error` and `old_io::IoError` types via the `FromError` trait which
translate to `InvalidInput`.
This is a breaking change due to the modification of existing `#[unstable]` APIs
and new deprecation, and more detailed information can be found in the two RFCs.
Notable breakage includes:
* All construction of `CString` now needs to use `new` and handle the outgoing
`Result`.
* Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call.
* The `as_slice*` methods have been removed in favor of just having the
`as_bytes*` methods.
Closes#22469Closes#22470
[breaking-change]
Per [RFC 579](https://github.com/rust-lang/rfcs/pull/579), this commit
adds a new `std::process` module. This module is largely based on the
existing `std::old_io::process` module, but refactors the API to use
`OsStr` and other new standards set out by IO reform.
The existing module is not yet deprecated, to allow for the new API to
get a bit of testing before a mass migration to it.