Functions currently can't have mappings in multiple files, and if that ever
changes (e.g. to properly support expansion regions), this code will need to be
completely overhauled anyway.
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.
In the future, branch and MC/DC mappings might have expressions that don't
correspond to any single point in the control-flow graph. That makes it
trickier to keep track of which expressions should expect an `ExpressionUsed`
node.
We therefore sidestep that complexity by only performing `ExpressionUsed`
simplification for expressions associated directly with ordinary `Code`
mappings.
The combined `get_expressions_and_counter_regions` method was an artifact of
having to prepare the expressions and mappings at the same time, to avoid
ownership/lifetime problems with temporary data used by both.
Now that we have an explicit transition from `FunctionCoverageCollector` to the
final `FunctionCoverage`, we can prepare any shared data during that step and
store it in the final struct.
This gives us a clearly-defined place to run code after the instance's MIR has
been traversed by codegen, but before we emit its `__llvm_covfun` record.
Even though expression details are now stored in the info structure, we still
need to inject `ExpressionUsed` statements into MIR, because if one is missing
during codegen then we know that it was optimized out and we can remap all of
its associated code regions to zero.
Previously, mappings were attached to individual coverage statements in MIR.
That necessitated special handling in MIR optimizations to avoid deleting those
statements, since otherwise codegen would be unable to reassemble the original
list of mappings.
With this change, a function's list of mappings is now attached to its MIR
body, and survives intact even if individual statements are deleted by
optimizations.
Instead of modifying the accumulated expressions in-place, we now build a set
of expressions that are known to be zero, and then consult that set on the fly
when converting the expression data for FFI.
This will be necessary when moving mappings and expression data into function
coverage info, which can't be mutated during codegen.
Coverage codegen can now allocate arrays based on the number of
counters/expressions originally used by the instrumentor.
The existing query that inspects coverage statements is still used for
determining the number of counters passed to `llvm.instrprof.increment`. If
some high-numbered counters were removed by MIR optimizations, the instrumented
binary can potentially use less memory and disk space at runtime.
This allows coverage information to be attached to the function as a whole when
appropriate, instead of being smuggled through coverage statements in the
function's basic blocks.
As an example, this patch moves the `function_source_hash` value out of
individual `CoverageKind::Counter` statements and into the per-function info.
When synthesizing unused functions for coverage purposes, the absence of this
info is taken to indicate that a function was not eligible for coverage and
should not be synthesized.
The LLVM API that we use to encode coverage mappings already has its own code
for removing unused coverage expressions and renumbering the rest.
This lets us get rid of our own complex renumbering code, making it easier to
change our coverage code in other ways.
After coverage instrumentation and MIR transformations, we can sometimes end up
with coverage expressions that always have a value of zero. Any expression
operand that refers to an always-zero expression can be replaced with a literal
`Operand::Zero`, making the emitted coverage mapping data smaller and simpler.
This simplification step is mostly redundant with the simplifications performed
inline in `expressions_with_regions`, except that it does a slightly more
thorough job in some cases (because it checks for always-zero expressions
*after* other simplifications).
However, adding this simplification step will then let us greatly simplify that
code, without affecting the quality of the emitted coverage maps.
Coverage FFI types were historically split across two modules, because some of
them were needed by code in `rustc_codegen_ssa`.
Now that all of the coverage codegen code has been moved into
`rustc_codegen_llvm` (#113355), it's possible to move all of the FFI types into
a single module, making it easier to see all of them at once.
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.