Add assert_matches macro.
This adds `assert_matches!(expression, pattern)`.
Unlike the other asserts, this one ~~consumes the expression~~ may consume the expression, to be able to match the pattern. (It could add a `&` implicitly, but that's noticable in the pattern, and will make a consuming guard impossible.)
See https://github.com/rust-lang/rust/issues/62633#issuecomment-790737853
This re-uses the same `left: .. right: ..` output as the `assert_eq` and `assert_ne` macros, but with the pattern as the right part:
assert_eq:
```
assertion failed: `(left == right)`
left: `Some("asdf")`,
right: `None`
```
assert_matches:
```
assertion failed: `(left matches right)`
left: `Ok("asdf")`,
right: `Err(_)`
```
cc ```@cuviper```
Add {BTreeMap,HashMap}::try_insert
`{BTreeMap,HashMap}::insert(key, new_val)` returns `Some(old_val)` if the key was already in the map. It's often useful to assert no duplicate values are inserted.
We experimented with `map.insert(key, val).unwrap_none()` (https://github.com/rust-lang/rust/issues/62633), but decided that that's not the kind of method we'd like to have on `Option`s.
`insert` always succeeds because it replaces the old value if it exists. One could argue that `insert()` is never the right method for panicking on duplicates, since already handles that case by replacing the value, only allowing you to panic after that already happened.
This PR adds a `try_insert` method that instead returns a `Result::Err` when the key already exists. This error contains both the `OccupiedEntry` and the value that was supposed to be inserted. This means that unwrapping that result gives more context:
```rust
map.insert(10, "world").unwrap_none();
// thread 'main' panicked at 'called `Option::unwrap_none()` on a `Some` value: "hello"', src/main.rs:8:29
```
```rust
map.try_insert(10, "world").unwrap();
// thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value:
// OccupiedError { key: 10, old_value: "hello", new_value: "world" }', src/main.rs:6:33
```
It also allows handling the failure in any other way, as you have full access to the `OccupiedEntry` and the value.
`try_insert` returns a reference to the value in case of success, making it an alternative to `.entry(key).or_insert(value)`.
r? ```@Amanieu```
Fixes https://github.com/rust-lang/rfcs/issues/3092
Convert primitives in the standard library to intra-doc links
Blocked on https://github.com/rust-lang/rust/pull/80181. I forgot that this needs to wait for the beta bump so the standard library can be documented with `doc --stage 0`.
Notably I didn't convert `core::slice` because it's like 50 links and I got scared 😨
Update the bootstrap compiler
This updates the bootstrap compiler, notably leaving out a change to enable semicolon in macro expressions lint, because stdarch still depends on the old behavior.
Provide NonZero_c_* integers
I'm pretty sure I am going want this for #73125 and it seems like an
omission that would be in any case good to remedy.
<strike>Because the raw C types are in `std`, not `core`, to achieve this we
must export the relevant macros from `core` so that `std` can use
them. That's done with a new `num_internals` perma-unstable feature.
The macros need to take more parameters for the module to get the
types from and feature attributes to use.
I have eyeballed the docs output for core, to check that my changes to
these macros have made no difference to the core docs output.</strike>
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
I'm pretty sure I am going want this for #73125 and it seems like an
omission that would be in any case good to remedy.
It's a shame we don't have competent token pasting and case mangling
for use in macro_rules!.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Let io::copy reuse BufWriter buffers
This optimization will allow users to implicitly set the buffer size for io::copy by wrapping the writer into a `BufWriter` if the default block size is insufficient, which should fix#49921
Due to min_specialization limitations this approach only works with `BufWriter` but not for `BufReader<R>` since `R` is unconstrained and thus the necessary specialization on `R: Read` is not always applicable. Once specialization becomes more powerful this optimization could be extended to look at the reader and writer side and use whichever buffer is larger.
Implement Rust 2021 panic
This implements the Rust 2021 versions of `panic!()`. See https://github.com/rust-lang/rust/issues/80162 and https://github.com/rust-lang/rfcs/pull/3007.
It does so by replacing `{std, core}::panic!()` by a bulitin macro that expands to either `$crate::panic::panic_2015!(..)` or `$crate::panic::panic_2021!(..)` depending on the edition of the caller.
This does not yet make std's panic an alias for core's panic on Rust 2021 as the RFC proposes. That will be a separate change: c5273bdfb2 That change is blocked on figuring out what to do with https://github.com/rust-lang/rust/issues/80846 first.
Stabilize raw ref macros
This stabilizes `raw_ref_macros` (https://github.com/rust-lang/rust/issues/73394), which is possible now that https://github.com/rust-lang/rust/issues/74355 is fixed.
However, as I already said in https://github.com/rust-lang/rust/issues/73394#issuecomment-751342185, I am not particularly happy with the current names of the macros. So I propose we also change them, which means I am proposing to stabilize the following in `core::ptr`:
```rust
pub macro const_addr_of($e:expr) {
&raw const $e
}
pub macro mut_addr_of($e:expr) {
&raw mut $e
}
```
The macro name change means we need another round of FCP. Cc `````@rust-lang/libs`````
Fixes#73394
Add `core::stream::Stream`
[[Tracking issue: #79024](https://github.com/rust-lang/rust/issues/79024)]
This patch adds the `core::stream` submodule and implements `core::stream::Stream` in accordance with [RFC2996](https://github.com/rust-lang/rfcs/pull/2996). The RFC hasn't been merged yet, but as requested by the libs team in https://github.com/rust-lang/rfcs/pull/2996#issuecomment-725696389 I'm filing this PR to get the ball rolling.
## Documentatation
The docs in this PR have been adapted from [`std::iter`](https://doc.rust-lang.org/std/iter/index.html), [`async_std::stream`](https://docs.rs/async-std/1.7.0/async_std/stream/index.html), and [`futures::stream::Stream`](https://docs.rs/futures/0.3.8/futures/stream/trait.Stream.html). Once this PR lands my plan is to follow this up with PRs to add helper methods such as `stream::repeat` which can be used to document more of the concepts that are currently missing. That will allow us to cover concepts such as "infinite streams" and "laziness" in more depth.
## Feature gate
The feature gate for `Stream` is `stream_trait`. This matches the `#[lang = "future_trait"]` attribute name. The intention is that only the APIs defined in RFC2996 will use this feature gate, with future additions such as `stream::repeat` using their own feature gates. This is so we can ensure a smooth path towards stabilizing the `Stream` trait without needing to stabilize all the APIs in `core::stream` at once. But also don't start expanding the API until _after_ stabilization, as was the case with `std::future`.
__edit:__ the feature gate has been changed to `async_stream` to match the feature gate proposed in the RFC.
## Conclusion
This PR introduces `core::stream::{Stream, Next}` and re-exports it from `std` as `std::stream::{Stream, Next}`. Landing `Stream` in the stdlib has been a mult-year process; and it's incredibly exciting for this to finally happen!
---
r? `````@KodrAus`````
cc/ `````@rust-lang/wg-async-foundations````` `````@rust-lang/libs`````
Make std::future a re-export of core::future
After 1a764a7ef5, there are no `std::future`-specific items (except for `cfg(bootstrap)` items removed in 93eed402ad). So, instead of defining `std` own module, we can re-export the `core::future` directly.
Stabilize slice::strip_prefix and slice::strip_suffix
These two methods are useful. The corresponding methods on `str` are already stable.
I believe that stablising these now would not get in the way of, in the future, extending these to take a richer pattern API a la `str`'s patterns.
Tracking PR: #73413. I also have an outstanding PR to improve the docs for these two functions and the corresponding ones on `str`: #75078
I have tried to follow the [instructions in the dev guide](https://rustc-dev-guide.rust-lang.org/stabilization_guide.html#stabilization-pr). The part to do with `compiler/rustc_feature` did not seem applicable. I assume that's because these are just library features, so there is no corresponding machinery in rustc.
Fix intra-doc links for non-path primitives
This does *not* currently work for associated items that are
auto-implemented by the compiler (e.g. `never::eq`), because they aren't
present in the source code. I plan to fix this in a follow-up PR.
Fixes https://github.com/rust-lang/rust/issues/63351 using the approach mentioned in https://github.com/rust-lang/rust/issues/63351#issuecomment-683352130.
r? `@Manishearth`
cc `@petrochenkov` - this makes `rustc_resolve::Res` public, is that ok? I'd just add an identical type alias in rustdoc if not, which seems a waste.
We hope later to extend `core::str::Pattern` to slices too, perhaps as
part of stabilising that. We want to minimise the amount of type
inference breakage when we do that, so we don't want to stabilise
strip_prefix and strip_suffix taking a simple `&[T]`.
@KodrAus suggested the approach of introducing a new perma-unstable
trait, which reduces this future inference break risk.
I found it necessary to make two impls of this trait, as the unsize
coercion don't apply when hunting for trait implementations.
Since SlicePattern's only method returns a reference, and the whole
trait is just a wrapper for slices, I made the trait type be the
non-reference type [T] or [T;N] rather than the reference. Otherwise
the trait would have a lifetime parameter.
I marked both the no-op conversion functions `#[inline]`. I'm not
sure if that is necessary but it seemed at the very least harmless.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
This caught several bugs where people expected `slice` to link to the
primitive, but it linked to the module instead.
This also uses `cfg_attr(bootstrap)` since the ambiguity only occurs
when compiling with stage 1.
Dogfood `str_split_once()`
Part of https://github.com/rust-lang/rust/issues/74773.
Beyond increased clarity, this fixes some instances of a common confusion with how `splitn(2)` behaves: the first element will always be `Some()`, regardless of the delimiter, and even if the value is empty.
Given this code:
```rust
fn main() {
let val = "...";
let mut iter = val.splitn(2, '=');
println!("Input: {:?}, first: {:?}, second: {:?}", val, iter.next(), iter.next());
}
```
We get:
```
Input: "no_delimiter", first: Some("no_delimiter"), second: None
Input: "k=v", first: Some("k"), second: Some("v")
Input: "=", first: Some(""), second: Some("")
```
Using `str_split_once()` makes more clear what happens when the delimiter is not found.
The code in io::stdio before this change misused the ReentrantMutexes,
by calling init() on them and moving them afterwards. Now that
ReentrantMutex requires Pin for init(), this mistake is no longer easy
to make.
unix: Extend UnixStream and UnixDatagram to send and receive file descriptors
Add the functions `recv_vectored_fds` and `send_vectored_fds` to `UnixDatagram` and `UnixStream`. With this functions `UnixDatagram` and `UnixStream` can send and receive file descriptors, by using `recvmsg` and `sendmsg` system call.
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.