Do not call query to compute coroutine layout for synthetic body of async closure
There is code in the MIR validator that attempts to prevent query cycles when inlining a coroutine into itself, and will use the coroutine layout directly from the body when it detects that's the same coroutine as the one that's being validated. After #128506, this logic didn't take into account the fact that the coroutine def id will differ if it's the "by-move body" of an async closure. This PR implements that.
Fixes#129811
coverage: Count await when the Future is immediately ready
Currently `await` is only counted towards coverage if the containing
function is suspended and resumed at least once. This is because it
expands to code which contains a branch on the discriminant of `Poll`.
By treating it like a branching macro (e.g. `assert!`), these
implementation details will be hidden from the coverage results.
I added a test to ensure the fix works in simple cases, but the heuristic of picking only the first await-related covspan might be unreliable. I plan on testing more thoroughly with a real codebase over the next couple of weeks.
closes#98712
Make `Ty::boxed_ty` return an `Option`
Looks like a good place to use Rust's type system.
---
Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess `Ty` should be made to deref to `TyKind`).
Currently `await` is only counted towards coverage if the containing
function is suspended and resumed at least once. This is because it
expands to code which contains a branch on the discriminant of `Poll`.
By treating it like a branching macro (e.g. `assert!`), these
implementation details will be hidden from the coverage results.
Rename dump of coroutine by-move-body to be more consistent, fix ICE in dump_mir
First, we add a missing match for `DefKind::SyntheticCoroutineBody` in `dump_mir`. Fixes#129703. The second commit (directly below) serves as a test.
Second, we reorder the `dump_mir` in `coroutine_by_move_body_def_id` to be *after* we adjust the body source, and change the disambiguator so it reads more like any other MIR body. This also serves as a test for the ICE, since we're dumping the MIR of a body with `DefKind::SyntheticCoroutineBody`.
Third, we change the parenting of the synthetic MIR body to have the *coroutine-closure* (i.e. async closure) as its parent, so we don't have long strings of `{closure#0}-{closure#0}-{closure#0}`.
try-job: test-various
Move `SanityCheck` and `MirPass`
They are currently in `rustc_middle`. This PR moves them to `rustc_mir_transform`, which makes more sense.
r? ``@cjgillot``
Because that's now the only crate that uses it.
Moving stuff out of `rustc_middle` is always welcome.
I chose to use `impl crate::MirPass`/`impl crate::MirLint` (with
explicit `crate::`) everywhere because that's the only mention of
`MirPass`/`MirLint` used in all of these files. (Prior to this change,
`MirPass` was mostly imported via `use rustc_middle::mir::*` items.)
The actual implementation remains in `rustc_mir_dataflow`, but this
commit moves the `MirPass` impl to `rustc_mir_transform` and changes it
to a `MirLint` (fixing a `FIXME` comment).
(I originally tried moving the full implementation from
`rustc_mir_dataflow` but I had some trait problems with `HasMoveData`
and `RustcPeekAt` and `MaybeLiveLocals`. This commit was much smaller
and simpler, but still will allow some follow-up cleanups.)
Remove `#[macro_use] extern crate tracing`, round 4
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via #[macro_use]. Continuing the work from #124511, #124914, and #125434. After this PR no `rustc_*` crates use `#[macro_use] extern crate tracing` except for `rustc_codegen_gcc` which is a special case and I will do separately.
r? ```@jieyouxu```
Remove `Option<!>` return types.
Several compiler functions have `Option<!>` for their return type. That's odd. The only valid return value is `None`, so why is this type used?
Because it lets you write certain patterns slightly more concisely. E.g. if you have these common patterns:
```
let Some(a) = f() else { return };
let Ok(b) = g() else { return };
```
you can shorten them to these:
```
let a = f()?;
let b = g().ok()?;
```
Huh.
An `Option` return type typically designates success/failure. How should I interpret the type signature of a function that always returns (i.e. doesn't panic), does useful work (modifying `&mut` arguments), and yet only ever fails? This idiom subverts the type system for a cute syntactic trick.
Furthermore, returning `Option<!>` from a function F makes things syntactically more convenient within F, but makes things worse at F's callsites. The callsites can themselves use `?` with F but should not, because they will get an unconditional early return, which is almost certainly not desirable. Instead the return value should be ignored. (Note that some of callsites of `process_operand`, `process_immedate`, `process_assign` actually do use `?`, though the early return doesn't matter in these cases because nothing of significance comes after those calls. Ugh.)
When I first saw this pattern I had no idea how to interpret it, and it took me several minutes of close reading to understand everything I've written above. I even started a Zulip thread about it to make sure I understood it properly. "Save a few characters by introducing types so weird that compiler devs have to discuss it on Zulip" feels like a bad trade-off to me. This commit replaces all the `Option<!>` return values and uses `else`/`return` (or something similar) to replace the relevant `?` uses. The result is slightly more verbose but much easier to understand.
r? ``````@cjgillot``````
Several compiler functions have `Option<!>` for their return type.
That's odd. The only valid return value is `None`, so why is this type
used?
Because it lets you write certain patterns slightly more concisely. E.g.
if you have these common patterns:
```
let Some(a) = f() else { return };
let Ok(b) = g() else { return };
```
you can shorten them to these:
```
let a = f()?;
let b = g().ok()?;
```
Huh.
An `Option` return type typically designates success/failure. How should
I interpret the type signature of a function that always returns (i.e.
doesn't panic), does useful work (modifying `&mut` arguments), and yet
only ever fails? This idiom subverts the type system for a cute
syntactic trick.
Furthermore, returning `Option<!>` from a function F makes things
syntactically more convenient within F, but makes things worse at F's
callsites. The callsites can themselves use `?` with F but should not,
because they will get an unconditional early return, which is almost
certainly not desirable. Instead the return value should be ignored.
(Note that some of callsites of `process_operand`, `process_immedate`,
`process_assign` actually do use `?`, though the early return doesn't
matter in these cases because nothing of significance comes after those
calls. Ugh.)
When I first saw this pattern I had no idea how to interpret it, and it
took me several minutes of close reading to understand everything I've
written above. I even started a Zulip thread about it to make sure I
understood it properly. "Save a few characters by introducing types so
weird that compiler devs have to discuss it on Zulip" feels like a bad
trade-off to me. This commit replaces all the `Option<!>` return values
and uses `else`/`return` (or something similar) to replace the relevant
`?` uses. The result is slightly more verbose but much easier to
understand.
By making it own the index maps, instead of holding references to them.
This requires moving the free function `find_candidate` into
`Candidate::reset_and_find`. It lets the `'alloc` lifetime be removed
everywhere that still has it.
LLVM uses the word "code" to refer to a particular kind of coverage mapping.
This unrelated usage of the word is confusing, and makes it harder to introduce
types whose names correspond to the LLVM classification of coverage kinds.