In #124902, mem-categorization got merged into ExprUseVisitor itself.
Adjust the comments that have become misleading or confusing following
this change.
A name like "report_error" suggests that the error in question might be
user facing. Use "bug" to make it clear that the error in question will
be an ICE.
Change the syntax to include parameter names and a trailing semicolon.
Motivation:
- Mirror the `syscall!` macro.
- Allow rustfmt to format it (when wrapped in parentheses).
- For better documentation (having the parameter names available in
the source code is a bit nicer).
- Allow future improvements to this macro where we can sometimes use the
symbol directly when it's statically known to be available.
Along with `TyCtx::env_var` helper. These can be used to track
environment variable accesses in the query system.
Since `TyCtx::env_var_os` uses `OsStr`, this commit also adds the
necessary trait implementations for that to work.
hygiene: Ensure uniqueness of `SyntaxContextData`s
`SyntaxContextData`s are basically interned with `SyntaxContext`s working as indices, so they are supposed to be unique.
However, currently duplicate `SyntaxContextData`s can be created during decoding from metadata or incremental cache.
This PR fixes that.
cc https://github.com/rust-lang/rust/pull/129827#discussion_r1759074553
This currently works because it's part of expansion, and that isn't yet
tracked by the query system. But we want to ensure it continues working,
even if that is changed.
Rollup of 7 pull requests
Successful merges:
- #138483 (Target modifiers fix for bool flags without value)
- #138818 (Don't produce debug information for compiler-introduced-vars when desugaring assignments.)
- #138898 (Mostly parser: Eliminate code that's been dead / semi-dead since the removal of type ascription syntax)
- #138930 (Add bootstrap step diff to CI job analysis)
- #138954 (Ensure `define_opaque` attrs are accounted for in HIR hash)
- #138959 (Revert "Make MatchPairTree::place non-optional")
- #138967 (Fix typo in error message)
r? `@ghost`
`@rustbot` modify labels: rollup
Add bootstrap step diff to CI job analysis
This PR adds another analysis to the job analysis report in GitHub summary. It compares (diffs) bootstrap steps executed by the parent run and by the current commit. This will help us figure out if the bootstrap invocation did something different than before, and also how did the duration of individual steps and bootstrap invocations change.
Can be tested on the https://github.com/rust-lang/rust/pull/119899 PR like this:
```bash
$ curl https://ci-artifacts.rust-lang.org/rustc-builds/3d3394eb64ee2f99ad1a2b849b376220fd38263e/metrics-mingw-check.json > metrics.json
$ cargo run --manifest-path src/ci/citool/Cargo.toml postprocess-metrics metrics.json --job-name mingw-check --parent 961351c76c > out.md
```
r? `@marcoie`
Mostly parser: Eliminate code that's been dead / semi-dead since the removal of type ascription syntax
**Disclaimer**: This PR is intended to mostly clean up code as opposed to bringing about behavioral changes. Therefore it doesn't aim to address any of the 'FIXME: remove after a month [dated: 2023-05-02]: "type ascription syntax has been removed, see issue [#]101728"'.
---
By commit:
1. Removes truly dead code:
* Since 1.71 (#109128) `let _ = { f: x };` is a syntax error as opposed to a semantic error which allows the parse-time diagnostic (suggestion) "*struct literal body without path // you might have forgotten […]*" to kick in.
* The analysis-time diagnostic (suggestion) from <=1.70 "*cannot find value \`f\` in this scope // you might have forgotten […]*" is therefore no longer reachable.
2. Updates `is_certainly_not_a_block` to be in line with the current grammar:
* The seq. `{ ident:` is definitely not the start of a block. Before the removal of ty ascr, `{ ident: ty_start` would begin a block expr.
* This shouldn't make more code compile IINM, it should *ultimately* only affect diagnostics.
* For example, `if T { f: () } {}` will now be interpreted as an `if` with struct lit `T { f: () }` as its *condition* (which is banned in the parser anyway) as opposed to just `T` (with the *consequent* being `f : ()` which is also invalid (since 1.71)). The diagnostics are almost the same because we have two separate parse recovery procedures + diagnostics: `StructLiteralNeedingParens` (*invalid struct lit*) before and `StructLiteralNotAllowedHere` (*struct lits aren't allowed here*) now, as you can see from the diff.
* (As an aside, even before this PR, fn `maybe_suggest_struct_literal` should've just used the much older & clearer `StructLiteralNotAllowedHere`)
* NB: This does sadly regress the compiler output for `tests/ui/parser/type-ascription-in-pattern.rs` but that can be fixed in follow-up PRs. It's not super important IMO and a natural consequence.
3. Removes code that's become dead due to the prior commit.
* Basically reverts #106620 + #112475 (without regressing rustc's output!).
* Now the older & more robust parse recovery procedure (cc `StructLiteralNotAllowedHere`) takes care of the cases the removed code used to handle.
* This automatically fixes the suggestions for \[[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=7e2030163b11ee96d17adc3325b01780)\]:
* `if Ty::<i32> { f: K }.m() {}`: `if Ty::<i32> { SomeStruct { f: K } }.m() {}` (broken) → ` if (Ty::<i32> { f: K }).m() {}`
* `if <T as Trait>::Out { f: K::<> }.m() {}`: `if <T as Trait>(::Out { f: K::<> }).m() {}` (broken) → `if (<T as Trait>::Out { f: K::<> }).m() {}`
4. Merge and simplify UI tests pertaining to this issue, so it's easier to add more regression tests like for the two cases mentioned above.
5. Merge UI tests and add the two regression tests.
Best reviewed commit by commit (on request I'll partially squash after approval).
Don't produce debug information for compiler-introduced-vars when desugaring assignments.
An assignment such as
(a, b) = (b, c);
desugars to the HIR
{ let (lhs, lhs) = (b, c); a = lhs; b = lhs; };
The repeated `lhs` leads to multiple Locals assigned to the same DILocalVariable. Rather than attempting to fix that, get rid of the debug info for these bindings that don't even exist in the program to begin with.
Fixes#138198
r? `@jieyouxu`
Target modifiers fix for bool flags without value
Fixed support of boolean flags without values: `-Zbool-flag` is now consistent with `-Zbool-flag=true` in another crate.
When flag is explicitly set to default value, target modifier will not be set in crate metainfo (`-Zflag=false` when `false` is a default value for the flag).
Improved error notification when target modifier flag is absent in a crate ("-Zflag unset").
Example:
```
note: `-Zreg-struct-return=true` in this crate is incompatible with unset `-Zreg-struct-return` in dependency `default_reg_struct_return`
```
There are several places in `rustc_middle` that check for an empty
lifetime name. These checks appear to be totally unnecessary, because
empty lifetime names aren't produced here. (Empty lifetime names *are*
possible in `hir::Lifetime`. Perhaps there was some confusion between
it and the `rustc_middle` types?)
This commit removes the `kw::Empty` checks.
Override PartialOrd methods for bool
I noticed that `PartialOrd` implementation for `bool` does not override the individual operator methods, unlike the other primitive types like `char` and integers.
This commit extracts these `PartialOrd` overrides shared by the other primitive types into a macro and calls it on `bool` too.
CC `@scottmcm` for our recent adventures in `PartialOrd` land
rustdoc: remove useless `Symbol::is_empty` checks.
There are a number of `is_empty` checks that can never fail. This commit removes them, in support of #137978.
r? `@GuillaumeGomez`
Add target maintainer information for powerpc64-unknown-linux-musl
We intend to fix the outstanding issues on the target and eventually promote it to tier 2. We have the capacity to maintain this target in the future and already perform regular builds of rustc for this target.
Currently, all host tools except miri build fine, but I have a patch for libffi-sys to make miri also compile fine for this target that is [pending review](https://github.com/tov/libffi-rs/pull/100).
While at it, add an option for the musl root for this target.
I also added a kernel version requirement, which is rather arbitrarily chosen, but it matches our tier 2 powerpc64le-unknown-linux-musl target so I think it is a good fit.
Fix ui pattern_types test for big-endian platforms
The newly added pattern types validity tests fail on s390x and presumably other big-endian systems, due to print of raw values with padding bytes.
To fix the tests remove the raw output values in the error note by `normalize-stderr`.
Trusty: Fix build for anonymous pipes and std::sys::process
PRs #136842 (Add libstd support for Trusty targets), #137793 (Stablize anonymous pipe), and #136929 (std: move process implementations to `sys`) merged around the same time, so update Trusty to take them into account.
cc `@randomPoison`
Batch mark waiters as unblocked when resuming in the deadlock handler
This fixes a race when resuming multiple threads to resolve query cycles. This now marks all threads as unblocked before resuming any of them. Previously if one was resumed and marked as unblocked at a time. The first thread resumed could fall asleep then Rayon would detect a second false deadlock. Later the initial deadlock handler thread would resume further threads.
This also reverts the workaround added in https://github.com/rust-lang/rust/pull/137731.
cc `@SparrowLii` `@lqd`
Stabilize `#![feature(precise_capturing_in_traits)]`
# Precise capturing (`+ use<>` bounds) in traits - Stabilization Report
Fixes https://github.com/rust-lang/rust/issues/130044.
## Stabilization summary
This report proposes the stabilization of `use<>` precise capturing bounds in return-position impl traits in traits (RPITITs). This completes a missing part of [RFC 3617 "Precise capturing"].
Precise capturing in traits was not ready for stabilization when the first subset was proposed for stabilization (namely, RPITs on free and inherent functions - https://github.com/rust-lang/rust/pull/127672) since this feature has a slightly different implementation, and it hadn't yet been implemented or tested at the time. It is now complete, and the type system implications of this stabilization are detailed below.
## Motivation
Currently, RPITITs capture all in-scope lifetimes, according to the decision made in the ["lifetime capture rules 2024" RFC](https://rust-lang.github.io/rfcs/3498-lifetime-capture-rules-2024.html#return-position-impl-trait-in-trait-rpitit). However, traits can be designed such that some lifetimes in arguments may not want to be captured. There is currently no way to express this.
## Major design decisions since the RFC
No major decisions were made. This is simply an extension to the RFC that was understood as a follow-up from the original stabilization.
## What is stabilized?
Users may write `+ use<'a, T>` bounds on their RPITITs. This conceptually modifies the desugaring of the RPITIT to omit the lifetimes that we would copy over from the method. For example,
```rust
trait Foo {
fn method<'a>(&'a self) -> impl Sized;
// ... desugars to something like:
type RPITIT_1<'a>: Sized;
fn method_desugared<'a>(&'a self) -> Self::RPITIT_1<'a>;
// ... whereas with precise capturing ...
fn precise<'a>(&'a self) -> impl Sized + use<Self>;
// ... desugars to something like:
type RPITIT_2: Sized;
fn precise_desugared<'a>(&'a self) -> Self::RPITIT_2;
}
```
And thus the GAT doesn't name `'a`. In the compiler internals, it's not implemented exactly like this, but not in a way that users should expect to be able to observe.
#### Limitations on what generics must be captured
Currently, we require that all generics from the trait (including the `Self`) type are captured. This is because the generics from the trait are required to be *invariant* in order to do associated type normalization.
And like regular precise capturing bounds, all type and const generics in scope must be captured.
Thus, only the in-scope method lifetimes may be relaxed with this syntax today.
## What isn't stabilized? (a.k.a. potential future work)
See section above. Relaxing the requirement to capture all type and const generics in scope may be relaxed when https://github.com/rust-lang/rust/issues/130043 is implemented, however it currently interacts with some underexplored corners of the type system (e.g. unconstrained type bivariance) so I don't expect it to come soon after.
## Implementation summary
This functionality is implemented analogously to the way that *opaque type* precise capturing works.
Namely, we currently use *variance* to model the capturedness of lifetimes. However, since RPITITs are anonymous GATs instead of opaque types, we instead modify the type relation of GATs to consider variances for RPITITs (along with opaque types which it has done since https://github.com/rust-lang/rust/pull/103491).
30f168ef81/compiler/rustc_middle/src/ty/util.rs (L954-L976)30f168ef81/compiler/rustc_type_ir/src/relate.rs (L240-L244)
Using variance to model capturedness is an implementation detail, and in the future it would be desirable if opaques and RPITITs simply did not include the uncaptured lifetimes in their generics. This can be changed in a forwards-compatible way, and almost certainly would not be observable by users (at least not negatively, since it may indeed fix some bugs along the way).
## Tests
* Test that the lifetime isn't actually captured: `tests/ui/impl-trait/precise-capturing/rpitit.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-outlives.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-outlives-2.rs`.
* Technical test for variance computation: `tests/ui/impl-trait/in-trait/variance.rs`.
* Test that you must capture all trait generics: `tests/ui/impl-trait/precise-capturing/forgot-to-capture-type.rs`.
* Test that you cannot capture more than what the trait specifies: `tests/ui/impl-trait/precise-capturing/rpitit-captures-more-method-lifetimes.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-impl-captures-too-much.rs`.
* Undercapturing (refinement) lint: `tests/ui/impl-trait/in-trait/refine-captures.rs`.
### What other unstable features may be exposed by this feature?
I don't believe that this exposes any new unstable features indirectly.
## Remaining bugs and open issues
Not aware of any open issues or bugs.
## Tooling support
Rustfmt: ✅ Supports formatting `+ use<>` everywhere.
Clippy: ✅ No support needed, unless specific clippy lints are impl'd to care for precise capturing itself.
Rustdoc: ✅ Rendering `+ use<>` precise capturing bounds is supported.
Rust-analyzer: ✅ Parser support, and then lifetime support isn't needed https://github.com/rust-lang/rust/pull/138128#issuecomment-2705292494 (previous: ~~❓ There is parser support, but I am unsure of rust-analyzer's level of support for RPITITs in general.~~)
## History
Tracking issue: https://github.com/rust-lang/rust/issues/130044
* https://github.com/rust-lang/rust/pull/131033
* https://github.com/rust-lang/rust/pull/132795
* https://github.com/rust-lang/rust/pull/136554
add FCW to warn about wasm ABI transition
See https://github.com/rust-lang/rust/issues/122532 for context: the "C" ABI on wasm32-unk-unk will change. The goal of this lint is to warn about any function definition and calls whose behavior will be affected by the change. My understanding is the following:
- scalar arguments are fine
- including 128 bit types, they get passed as two `i64` arguments in both ABIs
- `repr(C)` structs (recursively) wrapping a single scalar argument are fine (unless they have extra padding due to over-alignment attributes)
- all return values are fine
`@bjorn3` `@alexcrichton` `@Manishearth` is that correct?
I am making this a "show up in future compat reports" lint to maximize the chances people become aware of this. OTOH this likely means warnings for most users of Diplomat so maybe we shouldn't do this?
IIUC, wasm-bindgen should be unaffected by this lint as they only pass scalar types as arguments.
Tracking issue: https://github.com/rust-lang/rust/issues/138762
Transition plan blog post: https://github.com/rust-lang/blog.rust-lang.org/pull/1531
try-job: dist-various-2
I noticed that `PartialOrd` implementation for `bool` does not override the
individual operator methods, unlike the other primitive types like `char`
and integers.
This commit extracts these `PartialOrd` overrides shared by the other
primitive types into a macro and calls it on `bool` too.