The UNIX and WASI implementations use `isatty`. The Windows
implementation uses the same logic the `atty` crate uses, including the
hack needed to detect msys terminals.
Implement this trait for `File` and for `Stdin`/`Stdout`/`Stderr` and
their locked counterparts on all platforms. On UNIX and WASI, implement
it for `BorrowedFd`/`OwnedFd`. On Windows, implement it for
`BorrowedHandle`/`OwnedHandle`.
Based on https://github.com/rust-lang/rust/pull/91121
Co-authored-by: Matt Wilkinson <mattwilki17@gmail.com>
Add mention of `BufReader` in `Read::bytes` docs
There is a general paragraph about `BufRead` in the `Read` trait's docs, however using `bytes` without `BufRead` *always* has a large impact, due to reads of size 1.
`@rustbot` label +A-docs
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
`@m-ou-se` [realized][1] that because `Read` is implemented for `&mut impl
Read`, there's no need to take `&mut` in `io::read_to_string`.
Removing the `&mut` from the signature allows users to remove the `&mut`
from their calls (and thus pass an owned reader) if they don't use the
reader later.
[1]: https://github.com/rust-lang/rust/issues/80218#issuecomment-874322129
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
Reading a file into an empty vector or string buffer can incur
unnecessary `read` syscalls and memory re-allocations as the buffer
"warms up" and grows to its final size. This is perhaps a necessary evil
with generic readers, but files can be read in smarter by checking the
file size and reserving that much capacity.
`std::fs::read` and `read_to_string` already perform this optimization:
they open the file, reads its metadata, and call `with_capacity` with
the file size. This ensures that the buffer does not need to be resized
and an initial string of small `read` syscalls.
However, if a user opens the `File` themselves and calls
`file.read_to_end` or `file.read_to_string` they do not get this
optimization.
```rust
let mut buf = Vec::new();
file.read_to_end(&mut buf)?;
```
I searched through this project's codebase and even here are a *lot* of
examples of this. They're found all over in unit tests, which isn't a
big deal, but there are also several real instances in the compiler and
in Cargo. I've documented the ones I found in a comment here:
https://github.com/rust-lang/rust/issues/89516#issuecomment-934423999
Most telling, the `Read` trait and the `read_to_end` method both show
this exact pattern as examples of how to use readers. What this says to
me is that this shouldn't be solved by simply fixing the instances of it
in this codebase. If it's here it's certain to be prevalent in the wider
Rust ecosystem.
To that end, this commit adds specializations of `read_to_end` and
`read_to_string` directly on `File`. This way it's no longer a minor
footgun to start with an empty buffer when reading a file in.
A nice side effect of this change is that code that accesses a `File` as
a bare `Read` constraint or via a `dyn Read` trait object will benefit.
For example, this code from `compiler/rustc_serialize/src/json.rs`:
```rust
pub fn from_reader(rdr: &mut dyn Read) -> Result<Json, BuilderError> {
let mut contents = Vec::new();
match rdr.read_to_end(&mut contents) {
```
Related changes:
- I also added specializations to `BufReader` to delegate to
`self.inner`'s methods. That way it can call `File`'s optimized
implementations if the inner reader is a file.
- The private `std::io::append_to_string` function is now marked
`unsafe`.
- `File::read_to_string` being more efficient means that the performance
note for `io::read_to_string` can be softened. I've added @camelid's
suggested wording from:
https://github.com/rust-lang/rust/issues/80218#issuecomment-936806502
Fix read_to_end to not grow an exact size buffer
If you know how much data to expect and use `Vec::with_capacity` to pre-allocate a buffer of that capacity, `Read::read_to_end` will still double its capacity. It needs some space to perform a read, even though that read ends up returning `0`.
It's a bummer to carefully pre-allocate 1GB to read a 1GB file into memory and end up using 2GB.
This fixes that behavior by special casing a full buffer and reading into a small "probe" buffer instead. If that read returns `0` then it's confirmed that the buffer was the perfect size. If it doesn't, the probe buffer is appended to the normal buffer and the read loop continues.
Fixing this allows several workarounds in the standard library to be removed:
- `Take` no longer needs to override `Read::read_to_end`.
- The `reservation_size` callback that allowed `Take` to inhibit the previous over-allocation behavior isn't needed.
- `fs::read` doesn't need to reserve an extra byte in `initial_buffer_size`.
Curiously, there was a unit test that specifically checked that `Read::read_to_end` *does* over-allocate. I removed that test, too.
Fix spacing of links in inline code.
Similar to #80733, but the focus is different. This PR eliminates all occurrences of pieced-together inline code blocks like [`Box`]`<`[`Option`]`<T>>` and replaces them with good-looking ones (using HTML-syntax), like <code>[Box]<[Option]\<T>></code>. As far as I can tell, I should’ve found all of these in the standard library (regex search with `` r"`\]`|`\[`" ``) \[except for in `core::convert` where I’ve noticed other things in the docs that I want to fix in a separate PR]. In particular, unlike #80733, I’ve added almost no new instance of inline code that’s broken up into multiple links (or some link and some link-free part). I also added tooltips (the stuff in quotes for the markdown link listings) in places that caught my eye, but that’s by no means systematic, just opportunistic.
[Box]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[`Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[Option]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
[`Option`]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
Context: I got annoyed by repeatedly running into new misformatted inline code while reading the standard library docs. I know that once issue #83997 (and/or related ones) are resolved, these changes become somewhat obsolete, but I fail to notice much progress on that end right now.
r? `@jyn514`
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::fmt
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::{rc, sync}
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::string
----------
Fix spacing for links inside code blocks in alloc::vec
----------
Fix spacing for links inside code blocks in core::option
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in core::result
----------
Fix spacing for links inside code blocks in core::{iter::{self, iterator}, stream::stream, poll}
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in std::{fs, path}
----------
Fix spacing for links inside code blocks in std::{collections, time}
----------
Fix spacing for links inside code blocks in and make formatting of `&str`-like types consistent in std::ffi::{c_str, os_str}
----------
Fix spacing for links inside code blocks, and improve link tooltips in std::ffi
----------
Fix spacing for links inside code blocks, and improve a few link tooltips
in std::{io::{self, buffered::{bufreader, bufwriter}, cursor, util}, net::{self, addr}}
----------
Fix typo in link to `into` for `OsString` docs
----------
Remove tooltips that will probably become redundant in the future
----------
Apply suggestions from code review
Replacing `…std/primitive.reference.html` paths with just `reference`
Co-authored-by: Joshua Nelson <github@jyn.dev>
----------
Also replace `…std/primitive.reference.html` paths with just `reference` in `core::pin`
If you know how much data to expect and use `Vec::with_capacity` to
pre-allocate a buffer of that capacity, `Read::read_to_end` will still
double its capacity. It needs some space to perform a read, even though
that read ends up returning `0`.
It's a bummer to carefully pre-allocate 1GB to read a 1GB file into
memory and end up using 2GB.
This fixes that behavior by special casing a full buffer and reading
into a small "probe" buffer instead. If that read returns `0` then it's
confirmed that the buffer was the perfect size. If it doesn't, the probe
buffer is appended to the normal buffer and the read loop continues.
Fixing this allows several workarounds in the standard library to be
removed:
- `Take` no longer needs to override `Read::read_to_end`.
- The `reservation_size` callback that allowed `Take` to inhibit the
previous over-allocation behavior isn't needed.
- `fs::read` doesn't need to reserve an extra byte in
`initial_buffer_size`.
Curiously, there was a unit test that specifically checked that
`Read::read_to_end` *does* over-allocate. I removed that test, too.
Fix may not to appropriate might not or must not
I went through and changed occurrences of `may not` to be more explicit with `might not` and `must not`.