allow statics pointing to mutable statics
Fixes https://github.com/rust-lang/rust/issues/120450 for good. We can even simplify our checks: no need to specifically go looking for mutable references in const, we can just reject any reference that points to something mutable.
r? `@oli-obk`
Diagnostic renaming
Renaming various diagnostic types from `Diagnostic*` to `Diag*`. Part of https://github.com/rust-lang/compiler-team/issues/722. There are more to do but this is enough for one PR.
r? `@davidtwco`
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Remove all ConstPropNonsense
We track all locals and projections on them ourselves within the const propagator and only use the InterpCx to actually do some low level operations or read from constants (via `OpTy` we get for said constants).
This helps moving the const prop lint out from the normal pipeline and running it just based on borrowck information. This in turn allows us to make progress on https://github.com/rust-lang/rust/pull/108730#issuecomment-1875557745
there are various follow up cleanups that can be done after this PR (e.g. not matching on Rvalue twice and doing binop checks twice), but lets try landing this one first.
r? `@RalfJung`
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
const validation: point at where we found a pointer but expected an integer
Instead of validation just printing "unable to turn pointer into bytes", make this a regular validation error that says where in the value the bad pointer was found. Also distinguish "expected integer, got pointer" from "expected pointer, got partial pointer or mix of pointers".
To avoid duplicating things too much I refactored the diagnostics for validity a bit, so that "got uninit, expected X" and "got pointer, expected X" can share the "X" part. Also all the errors emitted for validation are now grouped under `const_eval_validation` so that they are in a single group in the ftl file.
r? `@oli-obk`
Normalize the RHS of an `Unsize` goal in the new solver
`Unsize` goals are... tricky. Not only do they structurally match on their self type, but they're also structural on their other type parameter. I'm pretty certain that it is both incomplete and also just plain undesirable to not consider normalizing the RHS of an unsize goal. More practically, I'd like for this code to work:
```rust
trait A {}
trait B: A {}
impl A for usize {}
impl B for usize {}
trait Mirror {
type Assoc: ?Sized;
}
impl<T: ?Sized> Mirror for T {
type Assoc = T;
}
fn main() {
// usize: Unsize<dyn B>
let x = Box::new(1usize) as Box<<dyn B as Mirror>::Assoc>;
// dyn A: Unsize<dyn B>
let y = x as Box<<dyn A as Mirror>::Assoc>;
}
```
---
In order to achieve this, we add `EvalCtxt::normalize_non_self_ty` (naming modulo bikeshedding), which *must* be used for all non-self type arguments that are structurally matched in candidate assembly. Currently this is only necessary for `Unsize`'s argument, but I could see future traits requiring this (hopefully rarely) in the future. It uses `repeat_while_none` to limit infinite looping, and normalizes the self type until it is no longer an alias.
Also, we need to fix feature gate detection for `trait_upcasting` and `unsized_tuple_coercion` when HIR typeck has unnormalized types. We can do that by checking the `ImplSource` returned by selection, which necessitates adding a new impl source for tuple upcasting.