Rollup of 8 pull requests
Successful merges:
- #114009 (compiler: allow transmute of ZST arrays with generics)
- #122195 (Note that the caller chooses a type for type param)
- #122651 (Suggest `_` for missing generic arguments in turbofish)
- #122784 (Add `tag_for_variant` query)
- #122839 (Split out `PredicatePolarity` from `ImplPolarity`)
- #122873 (Merge my contributor emails into one using mailmap)
- #122885 (Adjust better spastorino membership to triagebot's adhoc_groups)
- #122888 (add a couple more tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Several (doc) comments were super outdated or didn't provide enough context.
Some doc comments shoved everything in a single paragraph without respecting
the fact that the first paragraph should be a single sentence because rustdoc
treats these as item descriptions / synopses on module pages.
Safe Transmute: Revise safety analysis
This PR migrates `BikeshedIntrinsicFrom` to a simplified safety analysis (described [here](https://github.com/rust-lang/project-safe-transmute/issues/15)) that does not rely on analyzing the visibility of types and fields.
The revised analysis treats primitive types as safe, and user-defined types as potentially carrying safety invariants. If Rust gains explicit (un)safe fields, this PR is structured so that it will be fairly easy to thread support for those annotations into the analysis.
Notably, this PR removes the `Context` type parameter from `BikeshedIntrinsicFrom`. Most of the files changed by this PR are just UI tests tweaked to accommodate the removed parameter.
r? `@compiler-errors`
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
Remove `PredicateKind::ClosureKind`
We don't need the `ClosureKind` predicate kind -- instead, `Fn`-family trait goals are left as ambiguous, and we only need to make progress on `FnOnce` projection goals for inference purposes.
This is similar to how we do confirmation of `Fn`-family trait and projection goals in the new trait solver, which also doesn't use the `ClosureKind` predicate.
Some hacky logic is added in the second commit so that we can keep the error messages the same.
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types