Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
Split refining_impl_trait lint into _reachable, _internal variants
As discussed in https://github.com/rust-lang/rust/issues/119535#issuecomment-1909352040:
> We discussed this today in triage and developed a consensus to:
>
> * Add a separate lint against impls that refine a return type defined with RPITIT even when the trait is not crate public.
> * Place that in a lint group along with the analogous crate public lint.
> * Create an issue to solicit feedback on these lints (or perhaps two separate ones).
> * Have the warnings displayed with each lint reference this issue in a similar manner to how we do that today with the required `Self: '0'` bound on GATs.
> * Make a note to review this feedback on 2-3 release cycles.
This points users to https://github.com/rust-lang/rust/issues/121718 to leave feedback.
Consolidate WF for aliases
Make RPITs/TAITs/weak (type) aliases/projections all enforce:
1. their nominal predicates
2. their args are WF
This possibly does extra work, but is also nice for consistency sake.
r? lcnr
Deeply normalize obligations in `refining_impl_trait`
We somewhat awkwardly use semantic comparison when checking the `refining_impl_trait` lint. This relies on us being able to normalize bounds eagerly to avoid cases where an unnormalized alias is not considered equal to a normalized alias. Since `normalize` in the new solver is a noop, let's use `deeply_normalize` instead.
r? lcnr
cc ``@tmandry,`` this should fix your bug lol
Account for RPITIT in E0310 explicit lifetime constraint suggestion
When given
```rust
trait Original {
fn f() -> impl Fn();
}
trait Erased {
fn f(&self) -> Box<dyn Fn()>;
}
impl<T: Original> Erased for T {
fn f(&self) -> Box<dyn Fn()> {
Box::new(<T as Original>::f())
}
}
```
emit do not emit an invalid suggestion restricting the `Trait::{opaque}` type in a `where` clause:
```
error[E0310]: the associated type `<T as Original>::{opaque#0}` may not live long enough
--> $DIR/missing-static-bound-from-impl.rs:11:9
|
LL | Box::new(<T as Original>::f())
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| |
| the associated type `<T as Original>::{opaque#0}` must be valid for the static lifetime...
| ...so that the type `impl Fn()` will meet its required lifetime bounds
```
Partially address #119773. Ideally we'd suggest modifying `Erased::f` instead.
r? `@compiler-errors`
When given
```rust
trait Original {
fn f() -> impl Fn();
}
trait Erased {
fn f(&self) -> Box<dyn Fn()>;
}
impl<T: Original> Erased for T {
fn f(&self) -> Box<dyn Fn()> {
Box::new(<T as Original>::f())
}
}
```
avoid suggestion to restrict the `Trait::{opaque}` type in a `where` clause:
```
error[E0310]: the associated type `<T as Original>::{opaque#0}` may not live long enough
--> $DIR/missing-static-bound-from-impl.rs:11:9
|
LL | Box::new(<T as Original>::f())
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| |
| the associated type `<T as Original>::{opaque#0}` must be valid for the static lifetime...
| ...so that the type `impl Fn()` will meet its required lifetime bounds
```
CC #119773.
Properly handle `async` block and `async fn` in `if` exprs without `else`
When encountering a tail expression in the then arm of an `if` expression without an `else` arm, account for `async fn` and `async` blocks to suggest `return`ing the value and pointing at the return type of the `async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
When encountering a tail expression in the then arm of an `if` expression
without an `else` arm, account for `async fn` and `async` blocks to
suggest `return`ing the value and pointing at the return type of the
`async fn`.
We now also account for AFIT when looking for the return type to point at.
Fix#115405.
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
When we encounter a `dyn Trait` that isn't object safe, look for its
implementors. If there's one, mention using it directly If there are
less than 9, mention the possibility of creating a new enum and using
that instead.
Account for object unsafe `impl Trait on dyn Trait {}`. Make a
distinction between public and sealed traits.
Fix#80194.