During the RFC, it was discussed that figuring out whether a range is empty was subtle, and thus there should be a clear and obvious way to do it. It can't just be ExactSizeIterator::is_empty (also unstable) because not all ranges are ExactSize -- not even Range<i32> or RangeInclusive<usize>.
`match`ing on an `Option<Ordering>` seems cause some confusion for LLVM; switching to just using comparison operators removes a few jumps from the simple `for` loops I was trying.
Implement TrustedLen for Take<Repeat> and Take<RangeFrom>
This will allow optimization of simple `repeat(x).take(n).collect()` iterators, which are currently not vectorized and have capacity checks.
This will only support a few aggregates on `Repeat` and `RangeFrom`, which might be enough for simple cases, but doesn't optimize more complex ones. Namely, Cycle, StepBy, Filter, FilterMap, Peekable, SkipWhile, Skip, FlatMap, Fuse and Inspect are not marked `TrustedLen` when the inner iterator is infinite.
Previous discussion can be found in #47082
r? @alexcrichton
Because the last item needs special handling, it seems that LLVM has trouble canonicalizing the loops in external iteration. With the override, it becomes obvious that the start==end case exits the loop (as opposed to the one *after* that exiting the loop in external iteration).
This is the core method in terms of which the other methods (fold, all, any, find, position, nth, ...) can be implemented, allowing Iterator implementors to get the full goodness of internal iteration by only overriding one method (per direction).
Add more custom folding to `core::iter` adaptors
Many of the iterator adaptors will perform faster folds if they forward
to their inner iterator's folds, especially for inner types like `Chain`
which are optimized too. The following types are newly specialized:
| Type | `fold` | `rfold` |
| ----------- | ------ | ------- |
| `Enumerate` | ✓ | ✓ |
| `Filter` | ✓ | ✓ |
| `FilterMap` | ✓ | ✓ |
| `FlatMap` | exists | ✓ |
| `Fuse` | ✓ | ✓ |
| `Inspect` | ✓ | ✓ |
| `Peekable` | ✓ | N/A¹ |
| `Skip` | ✓ | N/A² |
| `SkipWhile` | ✓ | N/A¹ |
¹ not a `DoubleEndedIterator`
² `Skip::next_back` doesn't pull skipped items at all, but this couldn't
be avoided if `Skip::rfold` were to call its inner iterator's `rfold`.
Benchmarks
----------
In the following results, plain `_sum` computes the sum of a million
integers -- note that `sum()` is implemented with `fold()`. The
`_ref_sum` variants do the same on a `by_ref()` iterator, which is
limited to calling `next()` one by one, without specialized `fold`.
The `chain` variants perform the same tests on two iterators chained
together, to show a greater benefit of forwarding `fold` internally.
test iter::bench_enumerate_chain_ref_sum ... bench: 2,216,264 ns/iter (+/- 29,228)
test iter::bench_enumerate_chain_sum ... bench: 922,380 ns/iter (+/- 2,676)
test iter::bench_enumerate_ref_sum ... bench: 476,094 ns/iter (+/- 7,110)
test iter::bench_enumerate_sum ... bench: 476,438 ns/iter (+/- 3,334)
test iter::bench_filter_chain_ref_sum ... bench: 2,266,095 ns/iter (+/- 6,051)
test iter::bench_filter_chain_sum ... bench: 745,594 ns/iter (+/- 2,013)
test iter::bench_filter_ref_sum ... bench: 889,696 ns/iter (+/- 1,188)
test iter::bench_filter_sum ... bench: 667,325 ns/iter (+/- 1,894)
test iter::bench_filter_map_chain_ref_sum ... bench: 2,259,195 ns/iter (+/- 353,440)
test iter::bench_filter_map_chain_sum ... bench: 1,223,280 ns/iter (+/- 1,972)
test iter::bench_filter_map_ref_sum ... bench: 611,607 ns/iter (+/- 2,507)
test iter::bench_filter_map_sum ... bench: 611,610 ns/iter (+/- 472)
test iter::bench_fuse_chain_ref_sum ... bench: 2,246,106 ns/iter (+/- 22,395)
test iter::bench_fuse_chain_sum ... bench: 634,887 ns/iter (+/- 1,341)
test iter::bench_fuse_ref_sum ... bench: 444,816 ns/iter (+/- 1,748)
test iter::bench_fuse_sum ... bench: 316,954 ns/iter (+/- 2,616)
test iter::bench_inspect_chain_ref_sum ... bench: 2,245,431 ns/iter (+/- 21,371)
test iter::bench_inspect_chain_sum ... bench: 631,645 ns/iter (+/- 4,928)
test iter::bench_inspect_ref_sum ... bench: 317,437 ns/iter (+/- 702)
test iter::bench_inspect_sum ... bench: 315,942 ns/iter (+/- 4,320)
test iter::bench_peekable_chain_ref_sum ... bench: 2,243,585 ns/iter (+/- 12,186)
test iter::bench_peekable_chain_sum ... bench: 634,848 ns/iter (+/- 1,712)
test iter::bench_peekable_ref_sum ... bench: 444,808 ns/iter (+/- 480)
test iter::bench_peekable_sum ... bench: 317,133 ns/iter (+/- 3,309)
test iter::bench_skip_chain_ref_sum ... bench: 1,778,734 ns/iter (+/- 2,198)
test iter::bench_skip_chain_sum ... bench: 761,850 ns/iter (+/- 1,645)
test iter::bench_skip_ref_sum ... bench: 478,207 ns/iter (+/- 119,252)
test iter::bench_skip_sum ... bench: 315,614 ns/iter (+/- 3,054)
test iter::bench_skip_while_chain_ref_sum ... bench: 2,486,370 ns/iter (+/- 4,845)
test iter::bench_skip_while_chain_sum ... bench: 633,915 ns/iter (+/- 5,892)
test iter::bench_skip_while_ref_sum ... bench: 666,926 ns/iter (+/- 804)
test iter::bench_skip_while_sum ... bench: 444,405 ns/iter (+/- 571)
Many of the iterator adaptors will perform faster folds if they forward
to their inner iterator's folds, especially for inner types like `Chain`
which are optimized too. The following types are newly specialized:
| Type | `fold` | `rfold` |
| ----------- | ------ | ------- |
| `Enumerate` | ✓ | ✓ |
| `Filter` | ✓ | ✓ |
| `FilterMap` | ✓ | ✓ |
| `FlatMap` | exists | ✓ |
| `Fuse` | ✓ | ✓ |
| `Inspect` | ✓ | ✓ |
| `Peekable` | ✓ | N/A¹ |
| `Skip` | ✓ | N/A² |
| `SkipWhile` | ✓ | N/A¹ |
¹ not a `DoubleEndedIterator`
² `Skip::next_back` doesn't pull skipped items at all, but this couldn't
be avoided if `Skip::rfold` were to call its inner iterator's `rfold`.
Benchmarks
----------
In the following results, plain `_sum` computes the sum of a million
integers -- note that `sum()` is implemented with `fold()`. The
`_ref_sum` variants do the same on a `by_ref()` iterator, which is
limited to calling `next()` one by one, without specialized `fold`.
The `chain` variants perform the same tests on two iterators chained
together, to show a greater benefit of forwarding `fold` internally.
test iter::bench_enumerate_chain_ref_sum ... bench: 2,216,264 ns/iter (+/- 29,228)
test iter::bench_enumerate_chain_sum ... bench: 922,380 ns/iter (+/- 2,676)
test iter::bench_enumerate_ref_sum ... bench: 476,094 ns/iter (+/- 7,110)
test iter::bench_enumerate_sum ... bench: 476,438 ns/iter (+/- 3,334)
test iter::bench_filter_chain_ref_sum ... bench: 2,266,095 ns/iter (+/- 6,051)
test iter::bench_filter_chain_sum ... bench: 745,594 ns/iter (+/- 2,013)
test iter::bench_filter_ref_sum ... bench: 889,696 ns/iter (+/- 1,188)
test iter::bench_filter_sum ... bench: 667,325 ns/iter (+/- 1,894)
test iter::bench_filter_map_chain_ref_sum ... bench: 2,259,195 ns/iter (+/- 353,440)
test iter::bench_filter_map_chain_sum ... bench: 1,223,280 ns/iter (+/- 1,972)
test iter::bench_filter_map_ref_sum ... bench: 611,607 ns/iter (+/- 2,507)
test iter::bench_filter_map_sum ... bench: 611,610 ns/iter (+/- 472)
test iter::bench_fuse_chain_ref_sum ... bench: 2,246,106 ns/iter (+/- 22,395)
test iter::bench_fuse_chain_sum ... bench: 634,887 ns/iter (+/- 1,341)
test iter::bench_fuse_ref_sum ... bench: 444,816 ns/iter (+/- 1,748)
test iter::bench_fuse_sum ... bench: 316,954 ns/iter (+/- 2,616)
test iter::bench_inspect_chain_ref_sum ... bench: 2,245,431 ns/iter (+/- 21,371)
test iter::bench_inspect_chain_sum ... bench: 631,645 ns/iter (+/- 4,928)
test iter::bench_inspect_ref_sum ... bench: 317,437 ns/iter (+/- 702)
test iter::bench_inspect_sum ... bench: 315,942 ns/iter (+/- 4,320)
test iter::bench_peekable_chain_ref_sum ... bench: 2,243,585 ns/iter (+/- 12,186)
test iter::bench_peekable_chain_sum ... bench: 634,848 ns/iter (+/- 1,712)
test iter::bench_peekable_ref_sum ... bench: 444,808 ns/iter (+/- 480)
test iter::bench_peekable_sum ... bench: 317,133 ns/iter (+/- 3,309)
test iter::bench_skip_chain_ref_sum ... bench: 1,778,734 ns/iter (+/- 2,198)
test iter::bench_skip_chain_sum ... bench: 761,850 ns/iter (+/- 1,645)
test iter::bench_skip_ref_sum ... bench: 478,207 ns/iter (+/- 119,252)
test iter::bench_skip_sum ... bench: 315,614 ns/iter (+/- 3,054)
test iter::bench_skip_while_chain_ref_sum ... bench: 2,486,370 ns/iter (+/- 4,845)
test iter::bench_skip_while_chain_sum ... bench: 633,915 ns/iter (+/- 5,892)
test iter::bench_skip_while_ref_sum ... bench: 666,926 ns/iter (+/- 804)
test iter::bench_skip_while_sum ... bench: 444,405 ns/iter (+/- 571)
Add ..= to the parser
Add ..= to libproc_macro
Add ..= to ICH
Highlight ..= in rustdoc
Update impl Debug for RangeInclusive to ..=
Replace `...` to `..=` in range docs
Make the dotdoteq warning point to the ...
Add warning for ... in expressions
Updated more tests to the ..= syntax
Updated even more tests to the ..= syntax
Updated the inclusive_range entry in unstable book