Refactor `OperandRef::extract_field` to prep for MCP838
cc https://github.com/rust-lang/compiler-team/issues/838
This still supports exactly the same cases as it did before, just rearranged a bit to better emphasize what doesn't work.
Currently, marking a dependency private does not automatically make all
its child dependencies private. Resolve this by making its children
private by default as well.
This also resolves some FIXMEs for tests that are intended to fail but
previously passed.
[1]: https://github.com/rust-lang/rust/pull/135501#issuecomment-2620242419
In [1], most dependencies of `std` and other sysroot crates were marked
private, but this did not happen for `alloc` and `test`. Update these
here, marking public standard library crates as the only non-private
dependencies.
[1]: https://github.com/rust-lang/rust/pull/111076
Remove the portion of ed63539282 that automatically sets crates private
based on whether they are dependencies of `std`. Instead, this is
controlled by dependency configuration in `Cargo.toml`.
`compiler_builtins` is currently injected as `extern crate
compiler_builtins as _`. This has made gating via diagnostics difficult
because it appears in the crate graph as a non-private dependency, and
there isn't an easy way to differentiate between the injected AST and
user-specified `extern crate compiler_builtins`.
Resolve this by injecting `compiler_builtins` during postprocessing
rather than early in the AST. Most of the time this isn't even needed
because it shows up in `std` or `core`'s crate graph, but injection is
still needed to ensure `#![no_core]` works correctly.
A similar change was attempted at [1] but this encountered errors
building `proc_macro` and `rustc-std-workspace-std`. Similar failures
showed up while working on this patch, which were traced back to
`compiler_builtins` showing up in the graph twice (once via dependency
and once via injection). This is resolved by not injecting if a
`#![compiler_builtins]` crate already exists.
[1]: https://github.com/rust-lang/rust/pull/113634
The only case where can_reuse_cratenum could have been false in the past
are rustc plugins, support for which has been removed over a year ago
now. Nowadays the only case where locator.tuple is not target_triple is
when loading a proc macro, in which case we also set can_reuse_cratenum
to true. As such it is always true and we can remove some dead code.
Some codegen_llvm cleanups
Using some more safe wrappers and thus being able to remove a large unsafe block.
As a next step we should probably look into safe extern fns
Use a probe to avoid registering stray region obligations when re-checking drops in MIR typeck
Fixes#137288.
See the comment I left on the probe. I'm not totally sure why this depends on *both* an unconstrained type parameter in the impl and a type error for the self type, but I think the fix is at least theoretically well motivated.
r? ```@matthewjasper```
Simplify `Postorder` customization.
`Postorder` has a `C: Customization<'tcx>` parameter, that gives it flexibility about how it computes successors. But in practice, there are only two `impls` of `Customization`, and one is for the unit type.
This commit simplifies things by removing the generic parameter and replacing it with an `Option`.
r? ````@saethlin````
add more `s390x` target features
Closes#88937
tracking issue: https://github.com/rust-lang/rust/issues/130869
The target feature names are, right now, just the llvm target feature names. These mostly line up well with the names of [Facility Indications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) names. The linux kernel (and `/proc/cpuinfo`) uses shorter, more cryptic names. (e.g. "vector" is `vx`). We can deviate from the llvm names, but the CPU vendor (IBM) does not appear to use e.g. `vx` for what they call `vector`.
There are a number of implied target features between the vector facilities (based on the [Facility Indications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) table):
- 129 The vector facility for z/Architecture is installed in the z/Architecture architectural mode.
- 134 The vector packed decimal facility is installed in the z/Architecture architectural mode. When bit 134 is one, bit 129 is also one.
- 135 The vector enhancements facility 1 is installed in the z/Architecture architectural mode. When bit 135 is one, bit 129 is also one.
- 148 The vector-enhancements facility 2 is installed in the z/Architecture architectural mode. When bit 148 is one, bits 129 and 135 are also one.
- 152 The vector-packed-decimal-enhancement facility 1 is installed in the z/Architecture architectural mode. When bit 152 is one, bits 129 and 134 are also one.
- 165 The neural-network-processing-assist facility is installed in the z/Architecture architectural mode. When bit 165 is one, bit 129 is also one.
- 192 The vector-packed-decimal-enhancement facility 2 is installed in the z/Architecture architectural mode. When bit 192 is one, bits 129, 134, and 152 are also one.
The remaining facilities do not have any implied target features (that we provide):
- 45 The distinct-operands, fast-BCR-serialization, high-word, and population-count facilities, the interlocked-access facility 1, and the load/store-oncondition facility 1 are installed in the z/Architecture architectural mode.
- 73 The transactional-execution facility is installed in the z/Architecture architectural mode. Bit 49 is one when bit 73 is one.
- 133 The guarded-storage facility is installed in the z/Architecture architectural mode.
- 150 The enhanced-sort facility is installed in the z/Architecture architectural mode.
- 151 The DEFLATE-conversion facility is installed in the z/Architecture architectural mode.
The added target features are those that have ISA implications, can be queried at runtime, and have LLVM support. LLVM [defines more target features](d49a2d2bc9/llvm/lib/Target/SystemZ/SystemZFeatures.td), but I'm not sure those are useful. They can always be added later, and can already be set globally using `-Ctarget-feature`.
I'll also update the `is_s390x_feature_supported` macro (added in https://github.com/rust-lang/stdarch/pull/1699, not yet on nightly, that needs an stdarch sync) to include these target features.
``@Amanieu`` you had some reservations about the `"vector"` target feature name. It does appear to be the most "official" name we have. On the one hand the name is very generic, and some of the other names are rather long. For the `neural-network-processing-assist` even LLVM thought that was a bit much and shortened it to `nnp-assist`. Also for `vector-packed-decimal-enhancement facility 1` the llvm naming is inconsistent. On the other hand, the cpuinfo names are very cryptic, and aren't found in the IBM documentation.
r? ``@Amanieu``
cc ``@uweigand`` ``@taiki-e``
Specify scope in `out_of_scope_macro_calls` lint
```
warning: cannot find macro `in_root` in the crate root
--> $DIR/key-value-expansion-scope.rs:1:10
|
LL | #![doc = in_root!()]
| ^^^^^^^ not found in the crate root
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #124535 <https://github.com/rust-lang/rust/issues/124535>
= help: import `macro_rules` with `use` to make it callable above its definition
= note: `#[warn(out_of_scope_macro_calls)]` on by default
```
r? ```@petrochenkov```
Notes about tests:
- tests/ui/parser/macro/trait-object-macro-matcher.rs: the syntax error
is duplicated, because it occurs now when parsing the decl macro
input, and also when parsing the expanded decl macro. But this won't
show up for normal users due to error de-duplication.
- tests/ui/associated-consts/issue-93835.rs: similar, plus there are
some additional errors about this very broken code.
- The changes to metavariable descriptions in #132629 are now visible in
error message for several tests.
This pair of fn was introduced to perform invariant checks for scalars.
Their current behavior doesn't mesh as well with checking SIMD types,
so change the name of the fn to reflect their actual use-case and
refactor the corresponding checks.
Also simplify the returns from Option<AbiAndPrefAlign> to Option<Align>,
because every site was mapping away the "preferred" alignment anyways.
The target feature names are, right now, based on the llvm target feature names. These mostly line up well with the names of [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) names. The linux kernel uses shorter, more cryptic names. (e.g. "vector" is `vx`). We can deviate from the llvm names, but the CPU vendor (IBM) does not appear to use e.g. `vx` for what they call `vector`.
There are a number of implied target features between the vector facilities (based on the [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) table):
- 129 The vector facility for z/Architecture is installed in the z/Architecture architectural mode.
- 134 The vector packed decimal facility is installed in the z/Architecture architectural mode. When bit 134 is one, bit 129 is also one.
- 135 The vector enhancements facility 1 is installed in the z/Architecture architectural mode. When bit 135 is one, bit 129 is also one.
- 148 The vector-enhancements facility 2 is installed in the z/Architecture architectural mode. When bit 148 is one, bits 129 and 135 are also one.
- 152 The vector-packed-decimal-enhancement facility 1 is installed in the z/Architecture architectural mode. When bit 152 is one, bits 129 and 134 are also one.
- 165 The neural-network-processing-assist facility is installed in the z/Architecture architectural mode. When bit 165 is one, bit 129 is also one.
- 192 The vector-packed-decimal-enhancement facility 2 is installed in the z/Architecture architectural mode. When bit 192 is one, bits 129, 134, and 152 are also one.
And then there are a number of facilities without any implied target features
- 45 The distinct-operands, fast-BCR-serialization, high-word, and population-count facilities, the interlocked-access facility 1, and the load/store-oncondition facility 1 are installed in the z/Architecture architectural mode.
- 73 The transactional-execution facility is installed in the z/Architecture architectural mode. Bit 49 is one when bit 73 is one.
- 133 The guarded-storage facility is installed in the z/Architecture architectural mode.
- 150 The enhanced-sort facility is installed in the z/Architecture architectural mode.
- 151 The DEFLATE-conversion facility is installed in the z/Architecture architectural mode.
The added target features are those that have ISA implications, can be queried at runtime, and have LLVM support. LLVM [defines more target features](d49a2d2bc9/llvm/lib/Target/SystemZ/SystemZFeatures.td), but I'm not sure those are useful. They can always be added later, and can already be set globally using `-Ctarget-feature`.
Make x86 QNX target name consistent with other Rust targets
Rename target to be consistent with other Rust targets: Use `i686` instead of `i586`
See also
- #136495
- #109173
CC: `@jonathanpallant` `@japaric` `@gh-tr` `@samkearney`
Workaround Cranelift not yet properly supporting vectors smaller than 128bit
While it would technically be possible to workaround this in cg_clif, it quickly becomes very messy and would likely cause correctness issues. Working around it in rustc instead is much simper and won't have any negative impact for code running on stable as vectors smaller than 128bit can only be made on nightly using core::simd or #[repr(simd)].
Do not ignore uninhabited types for function-call ABI purposes. (Remove BackendRepr::Uninhabited)
Accepted MCP: https://github.com/rust-lang/compiler-team/issues/832Fixes#135802
Do not consider the inhabitedness of a type for function call ABI purposes.
* Remove the [`rustc_abi::BackendRepr::Uninhabited`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/enum.BackendRepr.html) variant
* Instead calculate the `BackendRepr` of uninhabited types "normally" (as though they were not uninhabited "at the top level", but still considering inhabitedness of variants to determine enum layout, etc)
* Add an `uninhabited: bool` field to [`rustc_abi::LayoutData`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_abi/struct.LayoutData.html) so inhabitedness of a `LayoutData` can still be queried when necessary (e.g. when determining if an enum variant needs a tag value allocated to it).
This should not affect type layouts (size/align/field offset); this should only affect function call ABI, and only of uninhabited types.
cc ``@RalfJung``
Pass through of target features to llvm-bitcode-linker and handling them
When using the llvm-bitcode-linker (`linker-flavor=llbc`) target-features are not passed through and are not handled by it.
The llvm-bitcode-linker is mainly used as a self contained linker to link llvm bitcode for the nvptx64 target. It uses `llvm-link`, `opt` and `llc` internally. To produce a `.ptx` file of a specific ptx-version it is necessary to pass the version to llc with the `--mattr` option. Without explicitly setting it, the emitted `.ptx`-version is the minimum supported version of the `--target-cpu`.
I would like to be able to explicitly set the ptx version as [some llvm problems only occur in earlier `.ptx`-versions](https://github.com/llvm/llvm-project/issues/112998).
Therefore this pull request adds support for passing target features to llvm-bitcode-linker and handling them.
I was not quite sure if adding these features to `rustc_target/src/target_features.rs` is necessary or not. If so I will gladly add these.
r? ``@kjetilkjeka``
infer linker flavor by linker name if it's sufficiently specific
Fix: `rustc` does not infer `llvm-bitcode-linker` uses `llbc` linker flavor if targeting `nvptx64-nvidia-cuda`.
Create a generic AVR target: avr-none
This commit removes the `avr-unknown-gnu-atmega328` target and replaces it with a more generic `avr-none` variant that must be specialized using `-C target-cpu` (e.g. `-C target-cpu=atmega328p`).
Seizing the day, I'm adding myself as the maintainer of this target - I've been already fixing the bugs anyway, might as well make it official 🙂
Related discussions:
- https://github.com/rust-lang/rust/pull/131171
- https://github.com/rust-lang/compiler-team/issues/800
try-job: x86_64-gnu-debug
The comments didn't make much sense to me. I asked Matthew Jasper on
Zulip about it and they said:
> I think that at the time I wanted to replace all (or most of) this
> with a reference to the HIR Id of the variable. I'll give this a look
> to see if it's still a reasonable idea, but removing the comments is
> fine.
and then:
> I don't think that changing this to an HirId would be better,
> recovering the information from the HIR seems like too much effort in
> exchange for making the MIR a little smaller.
Fix codegen of uninhabited PassMode::Indirect return types.
Add codegen test for uninhabited PassMode::Indirect return types.
Enable optimizations for uninhabited return type codegen test