Shadowing the associated type of a supertrait is allowed.
This however makes it impossible to set the associated type
of the supertrait in a dyn object.
This PR makes the error message for that case clearer, like
adding a note that shadowing is happening, as well as suggesting
renaming of one of the associated types.
r=petrochenckov
When an associated type with GATs isn't specified in a `dyn Trait`, emit
an object safety error instead of only complaining about the missing
associated type, as it will lead the user down a path of three different
errors before letting them know that what they were trying to do is
impossible to begin with.
Fix#103155.
Fix#101351.
When an associated type on a type parameter is used, and the type
parameter isn't constrained by the correct trait, suggest the
appropriate trait bound:
```
error[E0220]: associated type `Associated` not found for `T`
--> file.rs:6:15
|
6 | field: T::Associated,
| ^^^^^^^^^^ there is a similarly named associated type `Associated` in the trait `Foo`
|
help: consider restricting type parameter `T`
|
5 | struct Generic<T: Foo> {
| +++++
```
When an associated type on a type parameter has a typo, suggest fixing
it:
```
error[E0220]: associated type `Baa` not found for `T`
--> $DIR/issue-55673.rs:9:8
|
LL | T::Baa: std::fmt::Debug,
| ^^^ there is a similarly named associated type `Bar` in the trait `Foo`
|
help: change the associated type name to use `Bar` from `Foo`
|
LL | T::Bar: std::fmt::Debug,
| ~~~
```
Make it clearer that we're just checking for an RPITIT
Tiny nit to use `is_impl_trait_in_trait` more, to make it clearer that we're just checking whether a def-id is an RPITIT, rather than doing something meaningful with the `opt_rpitit_info`.
r? `@spastorino`
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup
Use restricted Damerau-Levenshtein distance for diagnostics
This replaces the existing Levenshtein algorithm with the Damerau-Levenshtein algorithm. This means that "ab" to "ba" is one change (a transposition) instead of two (a deletion and insertion). More specifically, this is a _restricted_ implementation, in that "ca" to "abc" cannot be performed as "ca" → "ac" → "abc", as there is an insertion in the middle of a transposition. I believe that errors like that are sufficiently rare that it's not worth taking into account.
This was first brought up [on IRLO](https://internals.rust-lang.org/t/18227) when it was noticed that the diagnostic for `prinltn!` (transposed L and T) was `print!` and not `println!`. Only a single existing UI test was effected, with the result being an objective improvement.
~~I have left the method name and various other references to the Levenshtein algorithm untouched, as the exact manner in which the edit distance is calculated should not be relevant to the caller.~~
r? ``@estebank``
``@rustbot`` label +A-diagnostics +C-enhancement
NB: Since we are using the same InferCtxt in each iteration,
we essentially *spoil* the inference variables and we only
ever get at most *one* applicable candidate (only the 1st candidate
has clean variables that can still unify correctly).