Where ItemDecorator creates new items given a single item, ItemModifier
alters the tagged item in place. The expansion rules for this are a bit
weird, but I think are the most reasonable option available.
When an item is expanded, all ItemModifier attributes are stripped from
it and the item is folded through all ItemModifiers. At that point, the
process repeats until there are no ItemModifiers in the new item.
If #[feature(default_type_parameters)] is enabled for a crate, then
deriving(Hash) will expand with Hash<W: Writer> instead of Hash<SipState> so
more hash algorithms can be used.
Makes labelled loops hygiene by performing renaming of the labels
defined in e.g. `'x: loop { ... }` and then used in break and continue
statements within loop body so that they act hygienically when used with
macros.
Closes#12262.
Closes#11692. Instead of returning the original expression, a dummy expression
(with identical span) is returned. This prevents infinite loops of failed
expansions as well as odd double error messages in certain situations.
Now that fold_item can return multiple items, this is pretty trivial. It
also recursively expands generated items so ItemDecorators can generate
items that are tagged with ItemDecorators!
Closes#4913
The old method of building up a list of items and threading it through
all of the decorators was unwieldy and not really scalable as
non-deriving ItemDecorators become possible. The API is now that the
decorator gets an immutable reference to the item it's attached to, and
a callback that it can pass new items to. If we want to add syntax
extensions that can modify the item they're attached to, we can add that
later, but I think it'll have to be separate from ItemDecorator to avoid
strange ordering issues.
@huonw
The old method of building up a list of items and threading it through
all of the decorators was unwieldy and not really scalable as
non-deriving ItemDecorators become possible. The API is now that the
decorator gets an immutable reference to the item it's attached to, and
a callback that it can pass new items to. If we want to add syntax
extensions that can modify the item they're attached to, we can add that
later, but I think it'll have to be separate from ItemDecorator to avoid
strange ordering issues.
The first setp for #9880 is to add a new `crate` keyword. This PR does exactly that. I took a chance to refactor `parse_item_foreign_mod` and I broke it down into 2 separate methods to isolate each feature.
The next step will be to push a new stage0 snapshot and then get rid of all `extern mod` around the code.
Externally loaded libraries are able to do things that cause references
to them to survive past the expansion phase (e.g. creating @-box cycles,
launching a task or storing something in task local data). As such, the
library has to stay loaded for the lifetime of the process.
This patch replaces all `crate` usage with `krate` before introducing the
new keyword. This ensures that after introducing the keyword, there
won't be any compilation errors.
krate might not be the most expressive substitution for crate but it's a
very close abbreviation for it. `module` was already used in several
places already.
Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
If the library is in the working directory, its path won't have a "/"
which will cause dlopen to search /usr/lib etc. It turns out that Path
auto-normalizes during joins so Path::new(".").join(path) is actually a
no-op.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
r? @pcwalton
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.