Suggest publicly accessible paths for items in private mod:
When encountering a path in non-import situations that are not reachable
due to privacy constraints, search for any public re-exports that the
user could use instead.
Track whether an import suggestion is offering a re-export.
When encountering a path with private segments, mention if the item at
the final path segment is not publicly accessible at all.
Add item visibility metadata to privacy errors from imports:
On unreachable imports, record the item that was being imported in order
to suggest publicly available re-exports or to be explicit that the item
is not available publicly from any path.
In order to allow this, we add a mode to `resolve_path` that will not
add new privacy errors, nor return early if it encounters one. This way
we can get the `Res` corresponding to the final item in the import,
which is used in the privacy error machinery.
`#[cfg]`s are frequently used to gate crate content behind cargo
features. This can lead to very confusing errors when features are
missing. For example, `serde` doesn't have the `derive` feature by
default. Therefore, `serde::Serialize` fails to resolve with a generic
error, even though the macro is present in the docs.
This commit adds a list of all stripped item names to metadata. This is
filled during macro expansion and then, through a fed query, persisted
in metadata. The downstream resolver can then access the metadata to
look at possible candidates for mentioning in the errors.
This slightly increases metadata (800k->809k for the feature-heavy
windows crate), but not enough to really matter.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
diagnostics: if AssocFn has self argument, describe as method
Discussed in 329265515
This commit also changes the tooltips on rustdoc intra-doc links targeting methods.
For anyone not sure why this is being done, see the Reference definitions of these terms in <https://doc.rust-lang.org/1.67.1/reference/items/associated-items.html#methods>
> Associated functions whose first parameter is named `self` are called methods and may be invoked using the [method call operator](https://doc.rust-lang.org/1.67.1/reference/expressions/method-call-expr.html), for example, `x.foo()`, as well as the usual function call notation.
In particular, while this means it's technically correct for rustc to refer to a method as an associated function (and there are a few cases where it'll still do so), rustc *must never* use the term "method" to refer to an associated function that does not have a `self` parameter.