Rollup of 12 pull requests
Successful merges:
- #135767 (Future incompatibility warning `unsupported_fn_ptr_calling_conventions`: Also warn in dependencies)
- #137852 (Remove layouting dead code for non-array SIMD types.)
- #137863 (Fix pretty printing of unsafe binders)
- #137882 (do not build additional stage on compiler paths)
- #137894 (Revert "store ScalarPair via memset when one side is undef and the other side can be memset")
- #137902 (Make `ast::TokenKind` more like `lexer::TokenKind`)
- #137921 (Subtree update of `rust-analyzer`)
- #137922 (A few cleanups after the removal of `cfg(not(parallel))`)
- #137939 (fix order on shl impl)
- #137946 (Fix docker run-local docs)
- #137955 (Always allow rustdoc-json tests to contain long lines)
- #137958 (triagebot.toml: Don't label `test/rustdoc-json` as A-rustdoc-search)
r? `@ghost`
`@rustbot` modify labels: rollup
Stop using `hash_raw_entry` in `CodegenCx::const_str`
That unstable feature (#56167) completed fcp-close, so the compiler needs to be
migrated away to allow its removal. In this case, `cg_llvm` and `cg_gcc`
were using raw entries to optimize their `const_str_cache` lookup and
insertion. We can change that to separate `get` and (on miss) `insert`
calls, so we still have the fast path avoiding string allocation when
the cache hits.
rename BackendRepr::Vector → SimdVector
For many Rustaceans, "vector" does not imply "SIMD", so let's be more clear in this type that is used pervasively in the compiler.
r? `@workingjubilee`
The embedded bitcode should always be prepared for LTO/ThinLTO
Fixes#115344. Fixes#117220.
There are currently two methods for generating bitcode that used for LTO. One method involves using `-C linker-plugin-lto` to emit object files as bitcode, which is the typical setting used by cargo. The other method is through `-C embed-bitcode=yes`.
When using with `-C embed-bitcode=yes -C lto=no`, we run a complete non-LTO LLVM pipeline to obtain bitcode, then the bitcode is used for LTO. We run the Call Graph Profile Pass twice on the same module.
This PR is doing something similar to LLVM's `buildFatLTODefaultPipeline`, obtaining the bitcode for embedding after running `buildThinLTOPreLinkDefaultPipeline`.
r? nikic
That unstable feature completed fcp-close, so the compiler needs to be
migrated away to allow its removal. In this case, `cg_llvm` and `cg_gcc`
were using raw entries to optimize their `const_str_cache` lookup and
insertion. We can change that to separate `get` and (on miss) `insert`
calls, so we still have the fast path avoiding string allocation when
the cache hits.
remove `simd_fpow` and `simd_fpowi`
Discussed in https://github.com/rust-lang/rust/issues/137555
These functions are not exposed from `std::intrinsics::simd`, and not used anywhere outside of the compiler. They also don't lower to particularly good code at least on the major ISAs (I checked x86_64, aarch64, s390x, powerpc), where the vector is just spilled to the stack and scalar functions are used for the actual logic.
r? `@RalfJung`
intrinsics: unify rint, roundeven, nearbyint in a single round_ties_even intrinsic
LLVM has three intrinsics here that all do the same thing (when used in the default FP environment). There's no reason Rust needs to copy that historically-grown mess -- let's just have one intrinsic and leave it up to the LLVM backend to decide how to lower that.
Suggested by `@hanna-kruppe` in https://github.com/rust-lang/rust/issues/136459; Cc `@tgross35`
try-job: test-various
- For shifts this shrinks the IR by no longer needing an `assume` while still providing the UB information
- Having this on the `i8`→`i1` truncations will hopefully help with some places that have to load `i8`s or pass those in LLVM structs without range information
Set both `nuw` and `nsw` in slice size calculation
There's an old note in the code to do this, and now that [LLVM-C has an API for it](f0b8ff1251/llvm/include/llvm-c/Core.h (L4403-L4408)), we might as well. And it's been there since what looks like LLVM 17 de9b6aa341 so doesn't even need to be conditional.
(There's other places, like `RawVecInner` or `Layout`, that might want to do things like this too, but I'll leave those for a future PR.)
Parallel-compiler-related cleanup
Parallel-compiler-related cleanup
I carefully split changes into commits. Commit messages are self-explanatory. Squashing is not recommended.
cc "Parallel Rustc Front-end" https://github.com/rust-lang/rust/issues/113349
r? SparrowLii
``@rustbot`` label: +WG-compiler-parallel
Update bootstrap compiler and rustfmt
The rustfmt version we previously used formats things differently from what the latest nightly rustfmt does. This causes issues for subtrees that get formatted both in-tree and in their own repo. Updating the rustfmt used in-tree solves those issues. Also bumped the bootstrap compiler as the stage0 update command always updates both at the same
time.
compiler: mostly-finish `rustc_abi` updates
This almost-finishes all the updates in the compiler to use `rustc_abi` and removes some of the reexports of `rustc_abi` items in `rustc_target` that were previously available.
r? ```@compiler-errors```
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
This is continuation of https://github.com/rust-lang/rust/pull/132282 .
I'm pretty sure I did everything right. In particular, I searched all occurrences of `Lrc` in submodules and made sure that they don't need replacement.
There are other possibilities, through.
We can define `enum Lrc<T> { Rc(Rc<T>), Arc(Arc<T>) }`. Or we can make `Lrc` a union and on every clone we can read from special thread-local variable. Or we can add a generic parameter to `Lrc` and, yes, this parameter will be everywhere across all codebase.
So, if you think we should take some alternative approach, then don't merge this PR. But if it is decided to stick with `Arc`, then, please, merge.
cc "Parallel Rustc Front-end" ( https://github.com/rust-lang/rust/issues/113349 )
r? SparrowLii
`@rustbot` label WG-compiler-parallel
Rollup of 8 pull requests
Successful merges:
- #135414 (Stabilize `const_black_box`)
- #136150 (ci: use windows 2025 for i686-mingw)
- #136258 (rustdoc: rename `issue-\d+.rs` tests to have meaningful names (part 11))
- #136270 (Remove `NamedVarMap`.)
- #136278 (add constraint graph to polonius MIR dump)
- #136287 (LLVM changed the nocapture attribute to captures(none))
- #136291 (some test suite cleanups)
- #136296 (float::min/max: mention the non-determinism around signed 0)
r? `@ghost`
`@rustbot` modify labels: rollup
Stabilize `const_black_box`
This has been unstably const since #92226, but a tracking issue was never created. Per [discussion on Zulip][zulip], there should not be any blockers to making this const-stable. The function does not provide any functionality at compile time but does allow code reuse between const- and non-const functions, so stabilize it here.
[zulip]: https://rust-lang.zulipchat.com/#narrow/channel/146212-t-compiler.2Fconst-eval/topic/const_black_box
Separate Builder methods from tcx
As part of the autodiff upstreaming we noticed, that it would be nice to have various builder methods available without the TypeContext, which prevents the normal CodegenCx to be passed around between threads.
We introduce a SimpleCx which just owns the llvm module and llvm context, to encapsulate them.
The previous CodegenCx now implements deref and forwards access to the llvm module or context to it's SimpleCx sub-struct. This gives us a bit more flexibility, because now we can pass (or construct) the SimpleCx in locations where we don't have enough information to construct a CodegenCx, or are not able to pass it around due to the tcx lifetimes (and it not implementing send/sync).
This also introduces an SBuilder, similar to the SimpleCx. The SBuilder uses a SimpleCx, whereas the existing Builder uses the larger CodegenCx. I will push updates to make implementations generic (where possible) to be implemented once and work for either of the two. I'll also clean up the leftover code.
`call` is a bit tricky, because it requires a tcx, I probably need to duplicate it after all.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
remove support for the (unstable) #[start] attribute
As explained by `@Noratrieb:`
`#[start]` should be deleted. It's nothing but an accidentally leaked implementation detail that's a not very useful mix between "portable" entrypoint logic and bad abstraction.
I think the way the stable user-facing entrypoint should work (and works today on stable) is pretty simple:
- `std`-using cross-platform programs should use `fn main()`. the compiler, together with `std`, will then ensure that code ends up at `main` (by having a platform-specific entrypoint that gets directed through `lang_start` in `std` to `main` - but that's just an implementation detail)
- `no_std` platform-specific programs should use `#![no_main]` and define their own platform-specific entrypoint symbol with `#[no_mangle]`, like `main`, `_start`, `WinMain` or `my_embedded_platform_wants_to_start_here`. most of them only support a single platform anyways, and need cfg for the different platform's ways of passing arguments or other things *anyways*
`#[start]` is in a super weird position of being neither of those two. It tries to pretend that it's cross-platform, but its signature is a total lie. Those arguments are just stubbed out to zero on ~~Windows~~ wasm, for example. It also only handles the platform-specific entrypoints for a few platforms that are supported by `std`, like Windows or Unix-likes. `my_embedded_platform_wants_to_start_here` can't use it, and neither could a libc-less Linux program.
So we have an attribute that only works in some cases anyways, that has a signature that's a total lie (and a signature that, as I might want to add, has changed recently, and that I definitely would not be comfortable giving *any* stability guarantees on), and where there's a pretty easy way to get things working without it in the first place.
Note that this feature has **not** been RFCed in the first place.
*This comment was posted [in May](https://github.com/rust-lang/rust/issues/29633#issuecomment-2088596042) and so far nobody spoke up in that issue with a usecase that would require keeping the attribute.*
Closes https://github.com/rust-lang/rust/issues/29633
try-job: x86_64-gnu-nopt
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
Revert most of #133194 (except the test and the comment fixes). Then refix
not emitting locations at all when the correct location discriminator value
exceeds LLVM's capacity.
Use a C-safe return type for `__rust_[ui]128_*` overflowing intrinsics
Combined with [1], this will change the overflowing multiplication operations to return an `extern "C"`-safe type.
Link: https://github.com/rust-lang/compiler-builtins/pull/735 [1]