Lexing converts source text into a token stream. Parsing converts a
token stream into AST fragments. This commit renames several lexing
operations that have "parse" in the name. I think these names have been
subtly confusing me for years.
This is just a `s/parse/lex/` on function names, with one exception:
`parse_stream_from_source_str` becomes `source_str_to_stream`, to make
it consistent with the existing `source_file_to_stream`. The commit also
moves that function's location in the file to be just above
`source_file_to_stream`.
The commit also cleans up a few comments along the way.
Translation of the lint message happens when the actual diagnostic is
created, not when the lint is buffered. Generating the message from
BuiltinLintDiag ensures that all required data to construct the message
is preserved in the LintBuffer, eventually allowing the messages to be
moved to fluent.
Remove the `msg` field from BufferedEarlyLint, it is either generated
from the data in the BuiltinLintDiag or stored inside
BuiltinLintDiag::Normal.
Properly handle emojis as literal prefix in macros
Do not accept the following
```rust
macro_rules! lexes {($($_:tt)*) => {}}
lexes!(🐛"foo");
```
Before, invalid emoji identifiers were gated during parsing instead of lexing in all cases, but this didn't account for macro pre-expansion of literal prefixes.
Fix#123696.
Fix invalid silencing of parsing error
Given
```rust
macro_rules! a {
( ) => {
impl<'b> c for d {
e::<f'g>
}
};
}
```
ensure an error is emitted.
Fix#123079.
Do not accept the following
```rust
macro_rules! lexes {($($_:tt)*) => {}}
lexes!(🐛"foo");
```
Before, invalid emoji identifiers were gated during parsing instead of lexing in all cases, but this didn't account for macro expansion of literal prefixes.
Fix#123696.
`lexer::UnmatchedDelim` struct in `rustc_parse` is unnecessary public
outside of the crate. This commit reduces the visibility to
`pub(crate)`.
Beside, this removes unnecessary field `expected_delim` that causes
warnings after changing the visibility.
Given `'hello world'` and `'1 str', provide a structured suggestion for a valid string literal:
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-3.rs:2:26
|
LL | println!('hello world');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("hello world");
| ~ ~
```
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-1.rs:2:20
|
LL | println!('1 + 1');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("1 + 1");
| ~ ~
```
Fix#119685.
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
Use `LitKind::Err` for malformed floats
#121120 changed `StringReader::cook_lexer_literal` to return `LitKind::Err` for malformed integer literals. This commit does the same for float literals, for consistency.
r? ``@fmease``
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
`cook_lexer_literal` can emit an error about an invalid int literal but
then return a non-`Err` token. And then `integer_lit` has to account for
this to avoid printing a redundant error message.
This commit changes `cook_lexer_literal` to return `Err` in that case.
Then `integer_lit` doesn't need the special case, and
`LitError::LexerError` can be removed.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
They can't contain `\x` escapes, which means they can't contain high
bytes, which means we can used `unescape_unicode` instead of
`unescape_mixed` to unescape them. This avoids unnecessary used of
`MixedUnit`.
`unescape_literal` becomes `unescape_unicode`, and `unescape_c_string`
becomes `unescape_mixed`. Because rfc3349 will mean that C string
literals will no longer be the only mixed utf8 literals.
One consequence is that errors returned by
`maybe_new_parser_from_source_str` now must be consumed, so a bunch of
places that previously ignored those errors now cancel them. (Most of
them explicitly dropped the errors before. I guess that was to indicate
"we are explicitly ignoring these", though I'm not 100% sure.)
Two different lifetimes are conflated. This doesn't matter right now,
but needs to be fixed for the next commit to work. And the more
descriptive lifetime names make the code easier to read.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
This lets different error levels share the same return type from
`emit_*`.
- A lot of inconsistencies in the `DiagCtxt` API are removed.
- `Noted` is removed.
- `FatalAbort` is introduced for fatal errors (abort via `raise`),
replacing the `EmissionGuarantee` impl for `!`.
- `Bug` is renamed `BugAbort` (to avoid clashing with `Level::Bug` and
to mirror `FatalAbort`), and modified to work in the new way with bug
errors (abort via panic).
- Various diagnostic creators and emitters updated to the new, better
signatures. Note that `DiagCtxt::bug` no longer needs to call
`panic_any`, because `emit` handles that.
Also shorten the obnoxiously long
`diagnostic_builder_emit_producing_guarantee` name.