```
error[E0109]: type arguments are not allowed on tuple variant `TSVariant`
--> $DIR/enum-variant-generic-args.rs:54:29
|
LL | Enum::<()>::TSVariant::<()>(());
| --------- ^^ type argument not allowed
| |
| not allowed on tuple variant `TSVariant`
|
= note: generic arguments are not allowed on both an enum and its variant's path segments simultaneously; they are only valid in one place or the other
help: remove the generics arguments from one of the path segments
|
LL - Enum::<()>::TSVariant::<()>(());
LL + Enum::<()>::TSVariant(());
|
```
```
error[E0109]: type arguments are not allowed on enum `Enum` and tuple variant `TSVariant`
--> $DIR/enum-variant-generic-args.rs:54:12
|
LL | Enum::<()>::TSVariant::<()>(());
| ---- ^^ --------- ^^ type argument not allowed
| | |
| | not allowed on tuple variant `TSVariant`
| not allowed on enum `Enum`
|
= note: generic arguments are not allowed on both an enum and its variant's path segments simultaneously; they are only valid in one place or the other
help: remove the generics arguments from one of the path segments
|
LL - Enum::<()>::TSVariant::<()>(());
LL + Enum::<()>::TSVariant(());
|
```
Fix#93993.
Introduce CoercePointeeWellformed for coherence checks at typeck stage
Fix#135206
This is the first PR to introduce the "wellformedness" check for `derive(CoercePointee)`.
This patch introduces a new error code to cover all the prerequisites of the said macro. The checks that is enforced with this patch is whether the data is indeed `struct` and whether the layout is set to `repr(transparent)`.
A following series of patch will arrive later to address the following concern.
1. #135217 so that we would only admit one single coercion on one type parameter, and leave the rest for future consideration in tandem of development of other coercion rules.
1. Enforcement of data field requirements.
**An open question** is whether there is a good schema to encode the `#[pointee]` as well, so that we could also check if the `#[pointee]` type parameter is indeed `?Sized`.
``@rustbot`` label F-derive_coerce_pointee
Always compute coroutine layout for eagerly emitting recursive layout errors
Detect recursive coroutine layouts even if we don't detect opaque type recursion in the new solver. This is for two reasons:
1. It helps us detect (bad) recursive async function calls in the new solver, which due to its approach to normalization causes us to not detect this via a recursive RPIT (since the opaques are more eagerly revealed in the opaque body).
* Fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/137.
2. It helps us detect (bad) recursive async functions behind AFITs. See the AFIT test that changed for the old solver too.
3. It also greatly simplifies the recursive impl trait check, since I can remove some jankness around how it handles coroutines.
#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Allow using named consts in pattern types
This required a refactoring first: I had to stop using `hir::Pat`in `hir::TyKind::Pat` and instead create a separate `TyPat` that has `ConstArg` for range ends instead of `PatExpr`. Within the type system we should be using `ConstArg` for all constants, as otherwise we'd be maintaining two separate const systems that could diverge. The big advantage of this PR is that we now inherit all the rules from const generics and don't have a separate system. While this makes things harder for users (const generic rules wrt what is allowed in those consts), it also means we don't accidentally allow some things like referring to assoc consts or doing math on generic consts.
1. Document the new intrinsics.
2. Make the intrinsics actually check the contract if enabled, and
remove `contract::check_requires` function.
3. Use panic with no unwind in case contract is using to check for
safety, we probably don't want to unwind. Following the same
reasoning as UB checks.
LTA: Actually check where-clauses for well-formedness at the def site
All of the added tests used to wrongfully pass.
r? oli-obk or types/compiler or reassign
Make comma separated lists of anything easier to make for errors
Provide a new function `listify`, meant to be used in cases similar to `pluralize!`. When you have a slice of arbitrary elements that need to be presented to the user, `listify` allows you to turn that into a list of comma separated strings.
This reduces a lot of redundant logic that happens often in diagnostics.
Provide a new function `listify`, meant to be used in cases similar to `pluralize!`. When you have a slice of arbitrary elements that need to be presented to the user, `listify` allows you to turn that into a list of comma separated strings.
This reduces a lot of redundant logic that happens often in diagnostics.
Compiler: Finalize dyn compatibility renaming
Update the Reference link to use the new URL fragment from https://github.com/rust-lang/reference/pull/1666 (this change has finally hit stable). Fixes a FIXME.
Follow-up to #130826.
Part of #130852.
~~Blocking it on #133372.~~ (merged)
r? ghost
Rollup of 8 pull requests
Successful merges:
- #135414 (Stabilize `const_black_box`)
- #136150 (ci: use windows 2025 for i686-mingw)
- #136258 (rustdoc: rename `issue-\d+.rs` tests to have meaningful names (part 11))
- #136270 (Remove `NamedVarMap`.)
- #136278 (add constraint graph to polonius MIR dump)
- #136287 (LLVM changed the nocapture attribute to captures(none))
- #136291 (some test suite cleanups)
- #136296 (float::min/max: mention the non-determinism around signed 0)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `NamedVarMap`.
`NamedVarMap` is extremely similar to `ResolveBoundVars`. The former contains two `UnordMap<ItemLocalId, T>` fields (obscured behind `ItemLocalMap` typedefs). The latter contains two
`SortedMap<ItemLocalId, T>` fields. We construct a `NamedVarMap` and then convert it into a `ResolveBoundVars` by sorting the `UnordMap`s, which is unnecessary busywork.
This commit removes `NamedVarMap` and constructs a `ResolveBoundVars` directly. `SortedMap` and `NamedVarMap` have slightly different perf characteristics during construction (e.g. speed of insertion) but this code isn't hot enough for that to matter.
A few details to note.
- A `FIXME` comment is removed.
- The detailed comments on the fields of `NamedVarMap` are copied to `ResolveBoundVars` (which has a single, incorrect comment).
- `BoundVarContext::map` is renamed.
- `ResolveBoundVars` gets a derived `Default` impl.
r? `@jackh726`
Instead re-export `rustc_hir_analysis::collect::suggest_impl_trait`,
which is the only thing from the module used in another crate. This
fixes a `FIXME` comment. Also adjust some visibilities to satisfy the
`unreachable_pub` lint.
This changes requires downgrading a link in a comment on `FnCtxt`
because `collect` is no longer public and rustdoc complains otherwise.
This is annoying but I can't see how to avoid it.
`delegation.rs` has three builders: `GenericsBuilder`,
`PredicatesBuilder`, and `GenericArgsBuilder`. The first two builders
have just two optional parameters, and the third one has zero. Each
builder is used within a single function. The code is over-engineered.
This commit removes the builders, replacing each with with a single
`build_*` function. This makes the code shorter and simpler.
There is a comment `Delegation to inherent methods is not yet
supported.` that appears three times mid-pattern and somehow inhibits
rustfmt from formatting the enclosing `match` statement. This commit
moves them to the top of the pattern, which enables more formatting.
This comment made sense when this crate was called `rustc_typeck`, but
makes less sense now that it's called `rustc_hir_analysis`. Especially
given that `check_drop_impl` is only called within the crate.