It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
`ascii::Char`-ify the escaping code in `core`
This means that `EscapeIterInner::as_str` no longer needs unsafe code, because the type system ensures the internal buffer is only ASCII, and thus valid UTF-8.
Come to think of it, this also gives it a (non-guaranteed) niche.
cc `@BurntSushi` as potentially interested
`ascii::Char` tracking issue: #110998
Add midpoint function for all integers and floating numbers
This pull-request adds the `midpoint` function to `{u,i}{8,16,32,64,128,size}`, `NonZeroU{8,16,32,64,size}` and `f{32,64}`.
This new function is analog to the [C++ midpoint](https://en.cppreference.com/w/cpp/numeric/midpoint) function, and basically compute `(a + b) / 2` with a rounding towards ~~`a`~~ negative infinity in the case of integers. Or simply said: `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a sufficiently-large signed integral type.
Note that unlike the C++ function this pull-request does not implement this function on pointers (`*const T` or `*mut T`). This could be implemented in a future pull-request if desire.
### Implementation
For `f32` and `f64` the implementation in based on the `libcxx` [one](18ab892ff7/libcxx/include/__numeric/midpoint.h (L65-L77)). I originally tried many different approach but all of them failed or lead me with a poor version of the `libcxx`. Note that `libstdc++` has a very similar one; Microsoft STL implementation is also basically the same as `libcxx`. It unfortunately doesn't seems like a better way exist.
For unsigned integers I created the macro `midpoint_impl!`, this macro has two branches:
- The first one take `$SelfT` and is used when there is no unsigned integer with at least the double of bits. The code simply use this formula `a + (b - a) / 2` with the arguments in the correct order and signs to have the good rounding.
- The second branch is used when a `$WideT` (at least double of bits as `$SelfT`) is provided, using a wider number means that no overflow can occur, this greatly improve the codegen (no branch and less instructions).
For signed integers the code basically forwards the signed numbers to the unsigned version of midpoint by mapping the signed numbers to their unsigned numbers (`ex: i8 [-128; 127] to [0; 255]`) and vice versa.
I originally created a version that worked directly on the signed numbers but the code was "ugly" and not understandable. Despite this mapping "overhead" the codegen is better than my most optimized version on signed integers.
~~Note that in the case of unsigned numbers I tried to be smart and used `#[cfg(target_pointer_width = "64")]` to determine if using the wide version was better or not by looking at the assembly on godbolt. This was applied to `u32`, `u64` and `usize` and doesn't change the behavior only the assembly code generated.~~
This means that `EscapeIterInner::as_str` no longer needs unsafe code, because the type system ensures the internal buffer is only ASCII, and thus valid UTF-8.
Constify `[u8]::is_ascii` (unstably)
UTF-8 checking in `const fn`-stabilized back in 1.63 (#97367), but apparently somehow ASCII checking was never const-ified, despite being simpler.
New constness-tracking issue for `is_ascii`: #111090
I noticed this working on `ascii::Char`: #110998
Add `ConstParamTy` trait
This is a bit sketch, but idk.
r? `@BoxyUwU`
Yet to be done:
- [x] ~~Figure out if it's okay to implement `StructuralEq` for primitives / possibly remove their special casing~~ (it should be okay, but maybe not in this PR...)
- [ ] Maybe refactor the code a little bit
- [x] Use a macro to make impls a bit nicer
Future work:
- [ ] Actually™ use the trait when checking if a `const` generic type is allowed
- [ ] _Really_ refactor the surrounding code
- [ ] Refactor `marker.rs` into multiple modules for each "theme" of markers
Refactor core::char::EscapeDefault and co. structures
Change core::char::{EscapeUnicode, EscapeDefault and EscapeDebug}
structures from using a state machine to computing escaped sequence
upfront and during iteration just going through the characters.
This is arguably simpler since it’s easier to think about having
a buffer and start..end range to iterate over rather than thinking
about a state machine.
This also harmonises implementation of aforementioned iterators and
core::ascii::EscapeDefault struct. This is done by introducing a new
helper EscapeIterInner struct which holds the buffer and offers simple
methods for iterating over range.
As a side effect, this probably optimises Display implementation for
those types since rather than calling write_char repeatedly, write_str
is invoked once. On 64-bit platforms, it also reduces size of some of
the structs:
| Struct | Before | After |
|----------------------------+--------+-------+
| core::char::EscapeUnicode | 16 | 12 |
| core::char::EscapeDefault | 16 | 12 |
| core::char::EscapeDebug | 16 | 16 |
My ulterior motive and reason why I started looking into this is
addition of as_str method to the iterators. With this change this
will became trivial. It’s also going to be trivial to implement
DoubleEndedIterator if that’s ever desired.
Change core::char::{EscapeUnicode, EscapeDefault and EscapeDebug}
structures from using a state machine to computing escaped sequence
upfront and during iteration just going through the characters.
This is arguably simpler since it’s easier to think about having
a buffer and start..end range to iterate over rather than thinking
about a state machine.
This also harmonises implementation of aforementioned iterators and
core::ascii::EscapeDefault struct. This is done by introducing a new
helper EscapeIterInner struct which holds the buffer and offers simple
methods for iterating over range.
As a side effect, this probably optimises Display implementation for
those types since rather than calling write_char repeatedly, write_str
is invoked once. On 64-bit platforms, it also reduces size of some of
the structs:
| Struct | Before | After |
|----------------------------+--------+-------+
| core::char::EscapeUnicode | 16 | 12 |
| core::char::EscapeDefault | 16 | 12 |
| core::char::EscapeDebug | 16 | 16 |
My ulterior motive and reason why I started looking into this is
addition of as_str method to the iterators. With this change this
will became trivial. It’s also going to be trivial to implement
DoubleEndedIterator if that’s ever desired.
Add `Option::as_`(`mut_`)`slice`
This adds the following functions:
* `Option<T>::as_slice(&self) -> &[T]`
* `Option<T>::as_mut_slice(&mut self) -> &[T]`
The `as_slice` and `as_mut_slice_mut` functions benefit from an optimization that makes them completely branch-free. ~~Unfortunately, this optimization is not available on by-value Options, therefore the `into_slice` implementations use the plain `match` + `slice::from_ref` approach.~~
Note that the optimization's soundness hinges on the fact that either the niche optimization makes the offset of the `Some(_)` contents zero or the mempory layout of `Option<T>` is equal to that of `Option<MaybeUninit<T>>`.
The idea has been discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Option.3A.3Aas_slice). Notably the idea for the `as_slice_mut` and `into_slice´ methods came from `@cuviper` and `@Sp00ph` hardened the optimization against niche-optimized Options.
The [rust playground](https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=74f8e4239a19f454c183aaf7b4a969e0) shows that the generated assembly of the optimized method is basically only a copy while the naive method generates code containing a `test dx, dx` on x86_64.
---
EDIT from reviewer: ACP is https://github.com/rust-lang/libs-team/issues/150
This adds the following functions:
* `Option<T>::as_slice(&self) -> &[T]`
* `Option<T>::as_slice_mut(&mut self) -> &[T]`
The `as_slice` and `as_slice_mut` functions benefit from an
optimization that makes them completely branch-free.
Note that the optimization's soundness hinges on the fact that either
the niche optimization makes the offset of the `Some(_)` contents zero
or the mempory layout of `Option<T>` is equal to that of
`Option<MaybeUninit<T>>`.
Stabilize `#![feature(target_feature_11)]`
## Stabilization report
### Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.
Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot be assigned to safe function pointers, and don't implement the `Fn*` traits.
However, calling them from other `#[target_feature]` functions with a superset of features is safe.
```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}
fn foo() {
// Calling `avx2` here is unsafe, as we must ensure
// that AVX is available first.
unsafe {
avx2();
}
}
#[target_feature(enable = "avx2")]
fn bar() {
// Calling `avx2` here is safe.
avx2();
}
```
### Test cases
Tests for this feature can be found in [`src/test/ui/rfcs/rfc-2396-target_feature-11/`](b67ba9ba20/src/test/ui/rfcs/rfc-2396-target_feature-11/).
### Edge cases
- https://github.com/rust-lang/rust/issues/73631
Closures defined inside functions marked with `#[target_feature]` inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.
```rust
#[target_feature(enable = "avx2")]
fn qux() {
let my_closure = || avx2(); // this call to `avx2` is safe
let f: fn() = my_closure;
}
```
This means that in order to call a function with `#[target_feature]`, you must show that the target-feature is available while the function executes *and* for as long as whatever may escape from that function lives.
### Documentation
- Reference: https://github.com/rust-lang/reference/pull/1181
---
cc tracking issue #69098
r? `@ghost`
implement const iterator using `rustc_do_not_const_check`
Previous experiment: #102225.
Explanation: rather than making all default methods work under `const` all at once, this uses `rustc_do_not_const_check` as a workaround to "trick" the compiler to not run any checks on those other default methods. Any const implementations are only required to implement the `next` method. Any actual calls to the trait methods other than `next` will either error in compile time (at CTFE runs), or run the methods correctly if they do not have any non-const operations. This is extremely easy to maintain, remove, or improve.