Write to stdout if `-` is given as output file
With this PR, if `-o -` or `--emit KIND=-` is provided, output will be written to stdout instead. Binary output (those of type `obj`, `llvm-bc`, `link` and `metadata`) being written this way will result in an error unless stdout is not a tty. Multiple output types going to stdout will trigger an error too, as they will all be mixded together.
This implements https://github.com/rust-lang/compiler-team/issues/431
The idea behind the changes is to introduce an `OutFileName` enum that represents the output - be it a real path or stdout - and to use this enum along the code paths that handle different output types.
Removed use of iteration through a HashMap/HashSet in rustc_incremental and replaced with IndexMap/IndexSet
This allows for the `#[allow(rustc::potential_query_instability)]` in rustc_incremental to be removed, moving towards fixing #84447 (although a LOT more modules have to be changed to fully resolve it). Only HashMaps/HashSets that are being iterated through have been modified (although many structs and traits outside of rustc_incremental had to be modified as well, as they had fields/methods that involved a HashMap/HashSet that would be iterated through)
I'm making a PR for just 1 module changed to test for performance regressions and such, for future changes I'll either edit this PR to reflect additional modules being converted, or batch multiple modules of changes together and make a PR for each group of modules.
If `-o -` or `--emit KIND=-` is provided, output will be written
to stdout instead. Binary output (`obj`, `llvm-bc`, `link` and
`metadata`) being written this way will result in an error unless
stdout is not a tty. Multiple output types going to stdout will
trigger an error too, as they will all be mixded together.
fix(resolve): replace bindings to dummy for unresolved imports
close#109343
In #109343, `f` in `pub use f as g` points to:
|namespace| binding|
|-|-|
|type| `external crate f`|
|value| `None` |
|macro| `None` |
When resolve `value_ns` during `resolve_doc_links`, the value of the binding of single_import `pub use f as g` goes to `pub use inner::f`, and since it does not satisfy [!self.is_accessible_from(binding.vis, single_import.parent_scope.module)](https://github.com/rust-lang/rust/blob/master/compiler/rustc_resolve/src/ident.rs#L971) and returns `Err(Undetermined)`, which eventually goes to `PathResult::Indeterminate => unreachable!`.
This PR replace all namespace binding to `dummy_binding` for indeterminate import, so, the bindings of `pub use f as g` had been changed to followings after finalize:
|namespace| binding|
|-|-|
|type| `dummy`|
|value| `dummy` |
|macro| `dummy` |
r?`@petrochenkov`
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
This PR adds support for detecting if overflow checks are enabled in similar fashion as debug_assertions are detected.
Possible use-case of this, for example, if we want to use checked integer casts in builds with overflow checks, e.g.
```rust
pub fn cast(val: usize)->u16 {
if cfg!(overflow_checks) {
val.try_into().unwrap()
}
else{
vas as _
}
}
```
Resolves#91130.
Tracking issue: #111466.
Improve check-cfg implementation
This PR makes multiple improvements into the implementation of check-cfg, it is a prerequisite to a follow-up PR that will introduce a simpler and more explicit syntax.
The 2 main area of improvements are:
1. Internal representation of expected values:
- now uses `FxHashSet<Option<Symbol>>` instead of `FxHashSet<Symbol>`, it made the no value expected case only possible when no values where in the `HashSet` which is now represented as `None` (same as cfg represent-it).
- a enum with `Some` and `Any` makes it now clear if some values are expected or not, necessary for `feature` and `target_feature`.
2. Diagnostics: Improve the diagnostics in multiple case and fix case where a missing value could have had a new name suggestion instead of the value diagnostic; and some drive by improvements
I highly recommend reviewing commit by commit.
r? `@petrochenkov`
This is done to simplify to relationship between names() and values()
but also make thing clearer (having an Any to represent that any values
are allowed) but also to allow the (none) + values expected cases that
wasn't possible before.
Add cross-language LLVM CFI support to the Rust compiler
This PR adds cross-language LLVM Control Flow Integrity (CFI) support to the Rust compiler by adding the `-Zsanitizer-cfi-normalize-integers` option to be used with Clang `-fsanitize-cfi-icall-normalize-integers` for normalizing integer types (see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space). For more information about LLVM CFI and cross-language LLVM CFI support for the Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and -Zsanitizer-cfi-normalize-integers, and requires proper (i.e., non-rustc) LTO (i.e., -Clinker-plugin-lto).
Thank you again, ``@bjorn3,`` ``@nikic,`` ``@samitolvanen,`` and the Rust community for all the help!
This commit adds cross-language LLVM Control Flow Integrity (CFI)
support to the Rust compiler by adding the
`-Zsanitizer-cfi-normalize-integers` option to be used with Clang
`-fsanitize-cfi-icall-normalize-integers` for normalizing integer types
(see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust
-compiled code "mixed binaries" (i.e., for when C or C++ and Rust
-compiled code share the same virtual address space). For more
information about LLVM CFI and cross-language LLVM CFI support for the
Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and
-Zsanitizer-cfi-normalize-integers, and requires proper (i.e.,
non-rustc) LTO (i.e., -Clinker-plugin-lto).
Validate `ignore` and `only` compiletest directive, and add human-readable ignore reasons
This PR adds strict validation for the `ignore` and `only` compiletest directives, failing if an unknown value is provided to them. Doing so uncovered 79 tests in `tests/ui` that had invalid directives, so this PR also fixes them.
Finally, this PR adds human-readable ignore reasons when tests are ignored due to `ignore` or `only` directives, like *"only executed when the architecture is aarch64"* or *"ignored when the operative system is windows"*. This was the original reason why I started working on this PR and #108659, as we need both of them for Ferrocene.
The PR is a draft because the code is extremely inefficient: it calls `rustc --print=cfg --target $target` for every rustc target (to gather the list of allowed ignore values), which on my system takes between 4s and 5s, and performs a lot of allocations of constant values. I'll fix both of them in the coming days.
r? `@ehuss`
`-Cdebuginfo=1` was never line tables only and
can't be due to backwards compatibility issues.
This was clarified and an option for line tables only
was added. Additionally an option for line info
directives only was added, which is well needed for
some targets. The debug info options should now
behave the same as clang's debug info options.
This is fixed by simply using the currently registered target in the
current session. We need to use it because of target json that are not
by design included in the rustc list of targets.
Add `kernel-address` sanitizer support for freestanding targets
This PR adds support for KASan (kernel address sanitizer) instrumentation in freestanding targets. I included the minimal set of `x86_64-unknown-none`, `riscv64{imac, gc}-unknown-none-elf`, and `aarch64-unknown-none` but there's likely other targets it can be added to. (`linux_kernel_base.rs`?) KASan uses the address sanitizer attributes but has the `CompileKernel` parameter set to `true` in the pass creation.
Recognize all bells and whistles that LLVM's XRay pass is capable of.
The always/never settings are a bit dumb without attributes but they're
still there. The default instruction count is chosen by the compiler,
not LLVM pass. We'll do it later.
Forward the `Display` implementation for `CrateType` to
`IntoDiagnosticArg` so that it can be used in diagnostic structs.
Signed-off-by: David Wood <david.wood@huawei.com>
Output tree representation on thir-tree
The current output of `-Zunpretty=thir-tree` is really cumbersome to work with, using an actual tree representation should make it easier to see what the thir looks like.
core: Support variety of atomic widths in width-agnostic functions
Before this change, the following functions and macros were annotated with `#[cfg(target_has_atomic = "8")]` or
`#[cfg(target_has_atomic_load_store = "8")]`:
* `atomic_int`
* `strongest_failure_ordering`
* `atomic_swap`
* `atomic_add`
* `atomic_sub`
* `atomic_compare_exchange`
* `atomic_compare_exchange_weak`
* `atomic_and`
* `atomic_nand`
* `atomic_or`
* `atomic_xor`
* `atomic_max`
* `atomic_min`
* `atomic_umax`
* `atomic_umin`
However, none of those functions and macros actually depend on 8-bit width and they are needed for all atomic widths (16-bit, 32-bit, 64-bit etc.). Some targets might not support 8-bit atomics (i.e. BPF, if we would enable atomic CAS for it).
This change fixes that by removing the `"8"` argument from annotations, which results in accepting the whole variety of widths.
Fixes#106845Fixes#106795
Signed-off-by: Michal Rostecki <vadorovsky@gmail.com>
Atomic operations for different widths (8-bit, 16-bit, 32-bit etc.) are
guarded by `target_has_atomic = "value"` symbol (i.e. `target_has_atomic
= "8"`) (and the other derivatives), but before this change, there was
no width-agnostic symbol indicating a general availability of atomic
operations.
This change introduces:
* `target_has_atomic_load_store` symbol when atomics for any integer
width are supported by the target.
* `target_has_atomic` symbol when also CAS is supported.
Fixes#106845
Signed-off-by: Michal Rostecki <vadorovsky@gmail.com>
Various cleanups around pre-TyCtxt queries and functions
part of #105462
based on https://github.com/rust-lang/rust/pull/106776 (everything starting at [0e2b39f](0e2b39fd1f) is new in this PR)
r? `@petrochenkov`
I think this should be most of the uncontroversial part of #105462.