Reading a file into an empty vector or string buffer can incur
unnecessary `read` syscalls and memory re-allocations as the buffer
"warms up" and grows to its final size. This is perhaps a necessary evil
with generic readers, but files can be read in smarter by checking the
file size and reserving that much capacity.
`std::fs::read` and `read_to_string` already perform this optimization:
they open the file, reads its metadata, and call `with_capacity` with
the file size. This ensures that the buffer does not need to be resized
and an initial string of small `read` syscalls.
However, if a user opens the `File` themselves and calls
`file.read_to_end` or `file.read_to_string` they do not get this
optimization.
```rust
let mut buf = Vec::new();
file.read_to_end(&mut buf)?;
```
I searched through this project's codebase and even here are a *lot* of
examples of this. They're found all over in unit tests, which isn't a
big deal, but there are also several real instances in the compiler and
in Cargo. I've documented the ones I found in a comment here:
https://github.com/rust-lang/rust/issues/89516#issuecomment-934423999
Most telling, the `Read` trait and the `read_to_end` method both show
this exact pattern as examples of how to use readers. What this says to
me is that this shouldn't be solved by simply fixing the instances of it
in this codebase. If it's here it's certain to be prevalent in the wider
Rust ecosystem.
To that end, this commit adds specializations of `read_to_end` and
`read_to_string` directly on `File`. This way it's no longer a minor
footgun to start with an empty buffer when reading a file in.
A nice side effect of this change is that code that accesses a `File` as
a bare `Read` constraint or via a `dyn Read` trait object will benefit.
For example, this code from `compiler/rustc_serialize/src/json.rs`:
```rust
pub fn from_reader(rdr: &mut dyn Read) -> Result<Json, BuilderError> {
let mut contents = Vec::new();
match rdr.read_to_end(&mut contents) {
```
Related changes:
- I also added specializations to `BufReader` to delegate to
`self.inner`'s methods. That way it can call `File`'s optimized
implementations if the inner reader is a file.
- The private `std::io::append_to_string` function is now marked
`unsafe`.
- `File::read_to_string` being more efficient means that the performance
note for `io::read_to_string` can be softened. I've added @camelid's
suggested wording from:
https://github.com/rust-lang/rust/issues/80218#issuecomment-936806502
Fix read_to_end to not grow an exact size buffer
If you know how much data to expect and use `Vec::with_capacity` to pre-allocate a buffer of that capacity, `Read::read_to_end` will still double its capacity. It needs some space to perform a read, even though that read ends up returning `0`.
It's a bummer to carefully pre-allocate 1GB to read a 1GB file into memory and end up using 2GB.
This fixes that behavior by special casing a full buffer and reading into a small "probe" buffer instead. If that read returns `0` then it's confirmed that the buffer was the perfect size. If it doesn't, the probe buffer is appended to the normal buffer and the read loop continues.
Fixing this allows several workarounds in the standard library to be removed:
- `Take` no longer needs to override `Read::read_to_end`.
- The `reservation_size` callback that allowed `Take` to inhibit the previous over-allocation behavior isn't needed.
- `fs::read` doesn't need to reserve an extra byte in `initial_buffer_size`.
Curiously, there was a unit test that specifically checked that `Read::read_to_end` *does* over-allocate. I removed that test, too.
Fix spacing of links in inline code.
Similar to #80733, but the focus is different. This PR eliminates all occurrences of pieced-together inline code blocks like [`Box`]`<`[`Option`]`<T>>` and replaces them with good-looking ones (using HTML-syntax), like <code>[Box]<[Option]\<T>></code>. As far as I can tell, I should’ve found all of these in the standard library (regex search with `` r"`\]`|`\[`" ``) \[except for in `core::convert` where I’ve noticed other things in the docs that I want to fix in a separate PR]. In particular, unlike #80733, I’ve added almost no new instance of inline code that’s broken up into multiple links (or some link and some link-free part). I also added tooltips (the stuff in quotes for the markdown link listings) in places that caught my eye, but that’s by no means systematic, just opportunistic.
[Box]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[`Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[Option]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
[`Option`]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
Context: I got annoyed by repeatedly running into new misformatted inline code while reading the standard library docs. I know that once issue #83997 (and/or related ones) are resolved, these changes become somewhat obsolete, but I fail to notice much progress on that end right now.
r? `@jyn514`
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::fmt
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::{rc, sync}
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::string
----------
Fix spacing for links inside code blocks in alloc::vec
----------
Fix spacing for links inside code blocks in core::option
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in core::result
----------
Fix spacing for links inside code blocks in core::{iter::{self, iterator}, stream::stream, poll}
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in std::{fs, path}
----------
Fix spacing for links inside code blocks in std::{collections, time}
----------
Fix spacing for links inside code blocks in and make formatting of `&str`-like types consistent in std::ffi::{c_str, os_str}
----------
Fix spacing for links inside code blocks, and improve link tooltips in std::ffi
----------
Fix spacing for links inside code blocks, and improve a few link tooltips
in std::{io::{self, buffered::{bufreader, bufwriter}, cursor, util}, net::{self, addr}}
----------
Fix typo in link to `into` for `OsString` docs
----------
Remove tooltips that will probably become redundant in the future
----------
Apply suggestions from code review
Replacing `…std/primitive.reference.html` paths with just `reference`
Co-authored-by: Joshua Nelson <github@jyn.dev>
----------
Also replace `…std/primitive.reference.html` paths with just `reference` in `core::pin`
If you know how much data to expect and use `Vec::with_capacity` to
pre-allocate a buffer of that capacity, `Read::read_to_end` will still
double its capacity. It needs some space to perform a read, even though
that read ends up returning `0`.
It's a bummer to carefully pre-allocate 1GB to read a 1GB file into
memory and end up using 2GB.
This fixes that behavior by special casing a full buffer and reading
into a small "probe" buffer instead. If that read returns `0` then it's
confirmed that the buffer was the perfect size. If it doesn't, the probe
buffer is appended to the normal buffer and the read loop continues.
Fixing this allows several workarounds in the standard library to be
removed:
- `Take` no longer needs to override `Read::read_to_end`.
- The `reservation_size` callback that allowed `Take` to inhibit the
previous over-allocation behavior isn't needed.
- `fs::read` doesn't need to reserve an extra byte in
`initial_buffer_size`.
Curiously, there was a unit test that specifically checked that
`Read::read_to_end` *does* over-allocate. I removed that test, too.
Fix may not to appropriate might not or must not
I went through and changed occurrences of `may not` to be more explicit with `might not` and `must not`.
I didn't notice the submodule, which means I failed to re-export this
to make it actually-public.
Reported-by: Andrew Gallant <jamslam@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Add diagnostic items for Clippy
This adds a bunch of diagnostic items to `std`/`core`/`alloc` functions, structs and traits used in Clippy. The actual refactorings in Clippy to use these items will be done in a different PR in Clippy after the next sync.
This PR doesn't include all paths Clippy uses, I've only gone through the first 85 lines of Clippy's [`paths.rs`](ecf85f4bdc/clippy_utils/src/paths.rs) (after rust-lang/rust-clippy#7466) to get some feedback early on. I've also decided against adding diagnostic items to methods, as it would be nicer and more scalable to access them in a nicer fashion, like adding a `is_diagnostic_assoc_item(did, sym::Iterator, sym::map)` function or something similar (Suggested by `@camsteffen` [on Zulip](225024603))
There seems to be some different naming conventions when it comes to diagnostic items, some use UpperCamelCase (`BinaryHeap`) and some snake_case (`hashmap_type`). This PR uses UpperCamelCase for structs and traits and snake_case with the module name as a prefix for functions. Any feedback on is this welcome.
cc: rust-lang/rust-clippy#5393
r? `@Manishearth`
stdio_locked: add tracking issue
Add the tracking issue number #86845 to the stability attributes for the implementation in #86799.
r? `@joshtriplett`
`@rustbot` label +A-io +C-cleanup +T-libs-api
Stabilize `Seek::rewind()`
This stabilizes `Seek::rewind`. It seemed to fit into one of the existing tests, so I extended that test rather than adding a new one.
Closes#85149.
add owned locked stdio handles
Add stderr_locked, stdin_locked, and stdout_locked free functions
to obtain owned locked stdio handles in a single step. Also add
into_lock methods to consume a stdio handle and return an owned
lock. These methods will make it easier to use locked stdio
handles without having to deal with lifetime problems or keeping
bindings to the unlocked handles around.
Fixes#85383; enables #86412.
r? `@joshtriplett`
`@rustbot` label +A-io +C-enhancement +D-newcomer-roadblock +T-libs-api
Redefine `ErrorKind::Other` and stop using it in std.
This implements the idea I shared yesterday in the libs meeting when we were discussing how to handle adding new `ErrorKind`s to the standard library: This redefines `Other` to be for *user defined errors only*, and changes all uses of `Other` in the standard library to a `#[doc(hidden)]` and permanently `#[unstable]` `ErrorKind` that users can not match on. This ensures that adding `ErrorKind`s at a later point in time is not a breaking change, since the user couldn't match on these errors anyway. This way, we use the `#[non_exhaustive]` property of the enum in a more effective way.
Open questions:
- How do we check this change doesn't cause too much breakage? Will a crate run help and be enough?
- How do we ensure we don't accidentally start using `Other` again in the standard library? We don't have a `pub(not crate)` or `#[deprecated(in this crate only)]`.
cc https://github.com/rust-lang/rust/pull/79965
cc `@rust-lang/libs` `@ijackson`
r? `@dtolnay`
Add stderr_locked, stdin_locked, and stdout_locked free functions
to obtain owned locked stdio handles in a single step. Also add
into_lock methods to consume a stdio handle and return an owned
lock. These methods will make it easier to use locked stdio
handles without having to deal with lifetime problems or keeping
bindings to the unlocked handles around.
Add has_data_left() to BufRead
This is a continuation of #40747 and also addresses #40745. The problem with the previous PR was that it had "eof" in its method name. This PR uses a more descriptive method name, but I'm open to changing it.
Specialize `io::Bytes::size_hint` for more types
Improve the result of `<io::Bytes as Iterator>::size_hint` for some readers. I did not manage to specialize `SizeHint` for `io::Cursor`
Side question: would it be interesting for `io::Read` to have an optional `size_hint` method ?
To make way for a new IoSlice(Mut)::advance function that advances a
single slice.
Also changes the signature to accept a `&mut &mut [IoSlice]`, not
returning anything. This will better match the future IoSlice::advance
function.
add an example to explain std::io::Read::read returning 0 in some cases
I have always found the explanation about `Read::read` returning 0 to indicate EOF but not indefinitely, so here's more info using Linux as example. I can also add example code if necessary
Move `std::memchr` to `sys_common`
`std::memchr` is a thin abstraction over the different `memchr` implementations in `sys`, along with documentation and tests. The module is only used internally by `std`, nothing is exported externally. Code like this is exactly what the `sys_common` module is for, so this PR moves it there.