Automatically convert paths to verbatim for filesystem operations that support it
This allows using longer paths without the user needing to `canonicalize` or manually prefix paths. If the path is already verbatim then this has no effect.
Fixes: #32689
This allows using longer paths for filesystem operations without the user needing to `canonicalize` or manually prefix paths.
If the path is already verbatim than this has no effect.
When using `process::Command` on Windows, environment variable names must be case-preserving but case-insensitive
When using `Command` to set the environment variables, the key should be compared as uppercase Unicode but when set it should preserve the original case.
Fixes#85242
More ErrorKinds for common errnos
From the commit message of the main commit here (as revised):
```
There are a number of IO error situations which it would be very
useful for Rust code to be able to recognise without having to resort
to OS-specific code. Taking some Unix examples, `ENOTEMPTY` and
`EXDEV` have obvious recovery strategies. Recently I was surprised to
discover that `ENOSPC` came out as `ErrorKind::Other`.
Since I am familiar with Unix I reviwed the list of errno values in
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
Here, I add those that most clearly seem to be needed.
`@CraftSpider` provided information about Windows, and references, which
I have tried to take into account.
This has to be insta-stable because we can't sensibly have a different
set of ErrorKinds depending on a std feature flag.
I have *not* added these to the mapping tables for any operating
systems other than Unix and Windows. I hope that it is OK to add them
now for Unix and Windows now, and maybe add them to other OS's mapping
tables as and when someone on that OS is able to consider the
situation.
I adopted the general principle that it was usually a bad idea to map
two distinct error values to the same Rust error code. I notice that
this principle is already violated in the case of `EACCES` and
`EPERM`, which both map to `PermissionDenied`. I think this was
probably a mistake but it would be quite hard to change now, so I
don't propose to do anything about that.
However, for Windows, there are sometimes different error codes for
identical situations. Eg there are WSA* versions of some error
codes as well as ERROR_* ones. Also Windows seems to have a great
many more erorr codes. I don't know precisely what best practice
would be for Windows.
```
<strike>
```
Errno values I wasn't sure about so *haven't* included:
EMFILE ENFILE ENOBUFS ENOLCK:
These are all fairly Unix-specific resource exhaustion situations.
In practice it seemed not very likely to me that anyone would want
to handle these differently to `Other`.
ENOMEM ERANGE EDOM EOVERFLOW
Normally these don't get exposed to the Rust callers I hope. They
don't tend to come out of filesystem APIs.
EILSEQ
Hopefully Rust libraries open files in binary mode and do the
converstion in Rust. So Rust code ought not to be exposed to
EILSEQ.
EIO
The range of things that could cause this is troublesome. I found
it difficult to describe. I do think it would be useful to add this
at some point, because EIO on a filesystem operation is much more
serious than most other errors.
ENETDOWN
I wasn't sure if this was useful or, indeed, if any modern systems
use it.
ENOEXEC
It is not clear to me how a Rust program could respond to this. It
seems rather niche.
EPROTO ENETRESET ENODATA ENOMSG ENOPROTOOPT ENOSR ENOSTR ETIME
ENOTRECOVERABLE EOWNERDEAD EBADMSG EPROTONOSUPPORT EPROTOTYPE EIDRM
These are network or STREAMS related errors which I have never in
my own Unix programming found the need to do anything with. I think
someone who understands these better should be the one to try to
find good Rust names and descriptions for them.
ENOTTY ENXIO ENODEV EOPNOTSUPP ESRCH EALREADY ECANCELED ECHILD
EINPROGRESS
These are very hard to get unless you're already doing something
very Unix-specific, in which case the raw_os_error interface is
probably more suitable than relying on the Rust ErrorKind mapping.
EFAULT EBADF
These would seem to be the result of application UB.
```
</strike>
<i>(omitted errnos are discussed below, especially in https://github.com/rust-lang/rust/pull/79965#issuecomment-810468334)
We're going to add many more of these.
This commit is pure code motion, plus the necessary administrivia, as
I have veried with the following runes:
$ git-diff HEAD~ | grep '^+' |sort >plus
$ git-diff HEAD~ | grep '^-' | perl -pe 's/^-/+/' |sort >min
$ diff -ub min plus |less
The output is precisely the expected `mod` and `use` directives.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
DWORD is a type alias for u32, so this makes no difference.
But this entry is anomalous and in my forthcoming commits I am going
to import many errors wholesale, and I spotted that my wholesale
import didn't match what was here.
CC: Chris Denton <christophersdenton@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
MSVC: Avoid using jmp stubs for dll function imports
Windows import libraries contain two symbols for every function: `__imp_FunctionName` and `FunctionName` (where `FunctionName` is the name of the function to be imported).
`__imp_FunctionName` contains the address of the imported function. This will be filled in by the Windows executable loader at runtime. `FunctionName` contains a jmp stub that simply jumps to the address given by `__imp_FunctionName`. E.g. it's a function that solely contains a single jmp instruction:
```asm
jmp __imp_FunctionName
```
When using an external DLL function in Rust, by default the linker will link to FunctionName, causing a bit of indirection at runtime. In Microsoft's C++ it's possible to instead tell it to insert calls to the address in `__imp_FunctionName` by using the `__declspec(dllimport)` attribute. In Rust it's possible to get effectively the same behaviour using the `#[link]` attribute on `extern` blocks.
----
The second commit also merges multiple `extern` blocks into one block. This is because otherwise Rust will currently create duplicate linker arguments for each block. In this case having duplicates shouldn't matter much other than the noise when displaying the linker command.
On Windows, libstd uses GetProcAddress to locate some DLL imports, so
that libstd can run on older versions of Windows. If a given DLL import
is not present, then libstd uses other behavior (such as fallback
implementations).
This commit uses a feature of the Windows CRT to do these DLL imports
during module initialization, before main() (or DllMain()) is called.
This is the ideal time to resolve imports, because the module is
effectively single-threaded at that point; no other threads can
touch the data or code of the module that is being initialized.
This avoids several problems. First, it makes the cost of performing
the DLL import lookups deterministic. Right now, the DLL imports are
done on demand, which means that application threads _might_ have to
do the DLL import during some time-sensitive operation. This is a
small source of unpredictability. Since threads can race, it's even
possible to have more than one thread running the same redundant
DLL lookup.
This commit also removes using the heap to allocate strings, during
the DLL lookups.
The minimum supported Windows version is now Windows 7. Windows XP
and Windows Vista are no longer supported; both are already broken, and
require extra steps to use.
This commit removes the delayed-binding support for Windows API
functions that are present on all supported Windows targets. This has
several benefits: Removes needless complexity. Removes a load and
dynamic call on hot paths in mutex acquire / release. This may have
performance benefits.
* "Drop official support for Windows XP"
https://github.com/rust-lang/compiler-team/issues/378
* "Firefox has ended support for Windows XP and Vista"
https://support.mozilla.org/en-US/kb/end-support-windows-xp-and-vista
Add fast futex-based thread parker for Windows.
This adds a fast futex-based thread parker for Windows. It either uses WaitOnAddress+WakeByAddressSingle or NT Keyed Events (NtWaitForKeyedEvent+NtReleaseKeyedEvent), depending on which is available. Together, this makes this thread parker work for Windows XP and up. Before this change, park()/unpark() did not work on Windows XP: it needs condition variables, which only exist since Windows Vista.
---
Unfortunately, NT Keyed Events are an undocumented Windows API. However:
- This API is relatively simple with obvious behaviour, and there are several (unofficial) articles documenting the details. [1]
- parking_lot has been using this API for years (on Windows versions before Windows 8). [2] Many big projects extensively use parking_lot, such as servo and the Rust compiler itself.
- It is the underlying API used by Windows SRW locks and Windows critical sections. [3] [4]
- The source code of the implementations of Wine, ReactOs, and Windows XP are available and match the expected behaviour.
- The main risk with an undocumented API is that it might change in the future. But since we only use it for older versions of Windows, that's not a problem.
- Even if these functions do not block or wake as we expect (which is unlikely, see all previous points), this implementation would still be memory safe. The NT Keyed Events API is only used to sleep/block in the right place.
[1]\: http://www.locklessinc.com/articles/keyed_events/
[2]\: 43abbc964e
[3]\: https://docs.microsoft.com/en-us/archive/msdn-magazine/2012/november/windows-with-c-the-evolution-of-synchronization-in-windows-and-c
[4]\: Windows Internals, Part 1, ISBN 9780735671300
---
The choice of fallback API is inspired by parking_lot(_core), but the implementation of this thread parker is different. While parking_lot has no use for a fast path (park() directly returning if unpark() was already called), this implementation has a fast path that returns without even checking which waiting/waking API to use, as the same atomic variable with compatible states is used in all cases.
- Module name can now be any string, not just an ident.
(Not all Windows api modules are valid Rust identifiers.)
- Adds c::FuncName::is_available() for checking if a function is really
available without having to do a duplicate lookup.
- Add comment explaining the lack of locking.
- Use `$_:block` to simplify the macro_rules.
- Apply allow(unused_variables) only to the fallback instead of
everything.