Lower BinOp::Cmp to llvm.{s,u}cmp.* intrinsics
Lowers `mir::BinOp::Cmp` (`three_way_compare` intrinsic) to the corresponding LLVM `llvm.{s,u}cmp.i8.*` intrinsics.
These are the intrinsics mentioned in https://github.com/rust-lang/rust/pull/118310, which are now available in LLVM 19.
I couldn't find any follow-up PRs/discussions about this, please let me know if I missed something.
r? `@scottmcm`
Don't re-`assume` in `transmute`s that don't change niches
I noticed in nightly 2025-02-21 that `transmute` is emitting way more `assume`s than necessary for newtypes.
For example, the three transmutes in <https://rust.godbolt.org/z/fW1KaTc4o> emits
```rust
define noundef range(i32 1, 0) i32 `@repeatedly_transparent_transmute(i32` noundef range(i32 1, 0) %_1) unnamed_addr {
start:
%0 = sub i32 %_1, 1
%1 = icmp ule i32 %0, -2
call void `@llvm.assume(i1` %1)
%2 = sub i32 %_1, 1
%3 = icmp ule i32 %2, -2
call void `@llvm.assume(i1` %3)
%4 = sub i32 %_1, 1
%5 = icmp ule i32 %4, -2
call void `@llvm.assume(i1` %5)
%6 = sub i32 %_1, 1
%7 = icmp ule i32 %6, -2
call void `@llvm.assume(i1` %7)
%8 = sub i32 %_1, 1
%9 = icmp ule i32 %8, -2
call void `@llvm.assume(i1` %9)
%10 = sub i32 %_1, 1
%11 = icmp ule i32 %10, -2
call void `@llvm.assume(i1` %11)
ret i32 %_1
}
```
But those are all just newtypes that don't change size or niches, so none of it's needed.
After this PR it's down to just
```rust
define noundef range(i32 1, 0) i32 `@repeatedly_transparent_transmute(i32` noundef range(i32 1, 0) %_1) unnamed_addr {
start:
ret i32 %_1
}
```
because none of those `assume`s in the original actually did anything.
(Transmuting to something with a difference niche, though, still has the assumes -- the other tests continue to pass checking that.)
Emit getelementptr inbounds nuw for pointer::add()
Lower pointer::add (via intrinsic::offset with unsigned offset) to getelementptr inbounds nuw on LLVM versions that support it. This lets LLVM make use of the pre-condition that the offset addition does not wrap in an unsigned sense. Together with inbounds, this also implies that the offset is non-negative.
Fixes https://github.com/rust-lang/rust/issues/137217.
intrinsics: unify rint, roundeven, nearbyint in a single round_ties_even intrinsic
LLVM has three intrinsics here that all do the same thing (when used in the default FP environment). There's no reason Rust needs to copy that historically-grown mess -- let's just have one intrinsic and leave it up to the LLVM backend to decide how to lower that.
Suggested by `@hanna-kruppe` in https://github.com/rust-lang/rust/issues/136459; Cc `@tgross35`
try-job: test-various
- For shifts this shrinks the IR by no longer needing an `assume` while still providing the UB information
- Having this on the `i8`→`i1` truncations will hopefully help with some places that have to load `i8`s or pass those in LLVM structs without range information
x86: use SSE2 to pass float and SIMD types
This builds on the new X86Sse2 ABI landed in https://github.com/rust-lang/rust/pull/137037 to actually make it a separate ABI from the default x86 ABI, and use SSE2 registers. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register).
Cc `@workingjubilee`
Fixes#133611
try-job: aarch64-apple
try-job: aarch64-gnu
try-job: aarch64-gnu-debug
try-job: test-various
try-job: x86_64-gnu-nopt
try-job: dist-i586-gnu-i586-i686-musl
try-job: x86_64-msvc-1
improve cold_path()
#120370 added a new instrinsic `cold_path()` and used it to fix `likely` and `unlikely`
However, in order to limit scope, the information about cold code paths is only used in 2-target switch instructions. This is sufficient for `likely` and `unlikely`, but limits usefulness of `cold_path` for idiomatic rust. For example, code like this:
```
if let Some(x) = y { ... }
```
may generate 3-target switch:
```
switch y.discriminator:
0 => true branch
1 = > false branch
_ => unreachable
```
and therefore marking a branch as cold will have no effect.
This PR improves `cold_path()` to work with arbitrary switch instructions.
Note that for 2-target switches, we can use `llvm.expect`, but for multiple targets we need to manually emit branch weights. I checked Clang and it also emits weights in this situation. The Clang's weight calculation is more complex that this PR, which I believe is mainly because `switch` in `C/C++` can have multiple cases going to the same target.
Previously it only did integer-ABI things, but this way it does data pointers too. That gives more information in general to the backend, and allows slightly simplifying one of the helpers in slice iterators.
stabilize const_swap
libs-api FCP passed in https://github.com/rust-lang/rust/issues/83163.
However, I only just realized that this actually involves an intrinsic. The intrinsic could be implemented entirely with existing stable const functionality, but we choose to make it a primitive to be able to detect more UB. So nominating for `@rust-lang/lang` to make sure they are aware; I leave it up to them whether they want to FCP this.
While at it I also renamed the intrinsic to make the "nonoverlapping" constraint more clear.
Fixes#83163
Add `select_unpredictable` to force LLVM to use CMOV
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs into branches if it comes from a `select` marked with an `unpredictable` metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits such a `select` and uses it in the implementation of `binary_search_by`.
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs
into branches if it comes from a `select` marked with an `unpredictable`
metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits
such a `select` and uses it in the implementation of `binary_search_by`.
Except for `simd-intrinsic/`, which has a lot of files containing
multiple types like `u8x64` which really are better when hand-formatted.
There is a surprising amount of two-space indenting in this directory.
Non-trivial changes:
- `rustfmt::skip` needed in `debug-column.rs` to preserve meaning of the
test.
- `rustfmt::skip` used in a few places where hand-formatting read more
nicely: `enum/enum-match.rs`
- Line number adjustments needed for the expected output of
`debug-column.rs` and `coroutine-debug.rs`.
Stop using LLVM struct types for alloca
The alloca type has no semantic meaning, only the size (and alignment, but we specify it explicitly) matter. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout. It is likely that a future LLVM version will change to an untyped alloca representation.
Split out from #121577.
r? `@ghost`
Dellvmize some intrinsics (use `u32` instead of `Self` in some integer intrinsics)
This implements https://github.com/rust-lang/compiler-team/issues/693 minus what was implemented in #123226.
Note: I decided to _not_ change `shl`/... builder methods, as it just doesn't seem worth it.
r? ``@scottmcm``
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~