1
Fork 0

auto merge of #12955 : sfackler/rust/vec_ng-doc, r=alexcrichton

I also removed a couple of methods that were silly and added sort.
This commit is contained in:
bors 2014-03-19 01:41:43 -07:00
commit ff033357bf
10 changed files with 623 additions and 43 deletions

View file

@ -117,7 +117,7 @@ impl TotalOrd for BigUint {
if s_len < o_len { return Less; }
if s_len > o_len { return Greater; }
for (&self_i, &other_i) in self.data.rev_iter().zip(other.data.rev_iter()) {
for (&self_i, &other_i) in self.data.iter().rev().zip(other.data.iter().rev()) {
if self_i < other_i { return Less; }
if self_i > other_i { return Greater; }
}
@ -788,7 +788,7 @@ impl BigUint {
let mut borrow = 0;
let mut shifted_rev = Vec::with_capacity(self.data.len());
for elem in self.data.rev_iter() {
for elem in self.data.iter().rev() {
shifted_rev.push((*elem >> n_bits) | borrow);
borrow = *elem << (BigDigit::bits - n_bits);
}

View file

@ -288,7 +288,7 @@ fn is_useful(cx: &MatchCheckCtxt, m: &matrix, v: &[@Pat]) -> useful {
is_useful_specialized(cx, m, v, vec(n), n, left_ty)
}
ty::ty_unboxed_vec(..) | ty::ty_vec(..) => {
let max_len = m.rev_iter().fold(0, |max_len, r| {
let max_len = m.iter().rev().fold(0, |max_len, r| {
match r.get(0).node {
PatVec(ref before, _, ref after) => {
cmp::max(before.len() + after.len(), max_len)

View file

@ -879,7 +879,7 @@ impl<'a> Liveness<'a> {
fn propagate_through_block(&mut self, blk: &Block, succ: LiveNode)
-> LiveNode {
let succ = self.propagate_through_opt_expr(blk.expr, succ);
blk.stmts.rev_iter().fold(succ, |succ, stmt| {
blk.stmts.iter().rev().fold(succ, |succ, stmt| {
self.propagate_through_stmt(*stmt, succ)
})
}
@ -980,7 +980,7 @@ impl<'a> Liveness<'a> {
this.ir.tcx.sess.span_bug(expr.span, "no registered caps");
}
};
caps.deref().rev_iter().fold(succ, |succ, cap| {
caps.deref().iter().rev().fold(succ, |succ, cap| {
this.init_from_succ(cap.ln, succ);
let var = this.variable(cap.var_nid, expr.span);
this.acc(cap.ln, var, ACC_READ | ACC_USE);
@ -1121,7 +1121,7 @@ impl<'a> Liveness<'a> {
ExprStruct(_, ref fields, with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr, succ);
fields.rev_iter().fold(succ, |succ, field| {
fields.iter().rev().fold(succ, |succ, field| {
self.propagate_through_expr(field.expr, succ)
})
}
@ -1173,14 +1173,14 @@ impl<'a> Liveness<'a> {
}
ExprInlineAsm(ref ia) => {
let succ = ia.outputs.rev_iter().fold(succ, |succ, &(_, expr)| {
let succ = ia.outputs.iter().rev().fold(succ, |succ, &(_, expr)| {
// see comment on lvalues in
// propagate_through_lvalue_components()
let succ = self.write_lvalue(expr, succ, ACC_WRITE);
self.propagate_through_lvalue_components(expr, succ)
});
// Inputs are executed first. Propagate last because of rev order
ia.inputs.rev_iter().fold(succ, |succ, &(_, expr)| {
ia.inputs.iter().rev().fold(succ, |succ, &(_, expr)| {
self.propagate_through_expr(expr, succ)
})
}

View file

@ -5520,7 +5520,8 @@ impl<'a> Resolver<'a> {
if idents.len() == 0 {
return ~"???";
}
return self.idents_to_str(idents.move_rev_iter()
return self.idents_to_str(idents.move_iter()
.rev()
.collect::<Vec<ast::Ident>>()
.as_slice());
}

View file

@ -94,7 +94,8 @@ fn lookup_vtables(vcx: &VtableContext,
// We do this backwards for reasons discussed above.
assert_eq!(substs.tps.len(), type_param_defs.len());
let mut result: Vec<vtable_param_res> =
substs.tps.rev_iter()
substs.tps.iter()
.rev()
.zip(type_param_defs.rev_iter())
.map(|(ty, def)|
lookup_vtables_for_param(vcx, span, Some(substs),

View file

@ -7,11 +7,7 @@
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Migrate documentation over from `std::vec` progressively. (This is
// shown in docs so that people have something to refer too, even if
// the page is rather empty.)
#[allow(missing_doc)];
//! A growable, owned vector
use cast::{forget, transmute};
use clone::Clone;
@ -19,7 +15,7 @@ use cmp::{Ord, Eq, Ordering, TotalEq, TotalOrd};
use container::{Container, Mutable};
use default::Default;
use fmt;
use iter::{DoubleEndedIterator, FromIterator, Extendable, Iterator, Rev};
use iter::{DoubleEndedIterator, FromIterator, Extendable, Iterator};
use libc::{free, c_void};
use mem::{size_of, move_val_init};
use mem;
@ -32,8 +28,21 @@ use ptr;
use rt::global_heap::{malloc_raw, realloc_raw};
use raw::Slice;
use vec::{ImmutableEqVector, ImmutableVector, Items, MutItems, MutableVector};
use vec::{RevItems};
use vec::{MutableTotalOrdVector};
/// An owned, growable vector
///
/// `Vec<T>` is the replacement for the deprecated `~[T]` type. The API is
/// largely the same. The `vec!` macro is provided to make initialization
/// easier.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.push(4);
/// println!("{}", vec); // prints [1, 2, 3, 4]
/// ```
#[unsafe_no_drop_flag]
pub struct Vec<T> {
priv len: uint,
@ -42,11 +51,32 @@ pub struct Vec<T> {
}
impl<T> Vec<T> {
/// Constructs a new, empty `Vec`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let mut vec: Vec<int> = Vec::new();
/// ```
#[inline]
pub fn new() -> Vec<T> {
Vec { len: 0, cap: 0, ptr: 0 as *mut T }
}
/// Constructs a new, empty `Vec` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` elements without
/// reallocating. If `capacity` is 0, the vector will not allocate.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let vec: Vec<int> = Vec::with_capacity(10);
/// ```
pub fn with_capacity(capacity: uint) -> Vec<T> {
if capacity == 0 {
Vec::new()
@ -57,6 +87,19 @@ impl<T> Vec<T> {
}
}
/// Creates and initializes a `Vec`.
///
/// Creates a `Vec` of size `length` and initializes the elements to the
/// value returned by the closure `op`.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let vec = Vec::from_fn(3, |idx| idx * 2);
/// assert_eq!(vec, vec!(0, 2, 4));
/// ```
pub fn from_fn(length: uint, op: |uint| -> T) -> Vec<T> {
unsafe {
let mut xs = Vec::with_capacity(length);
@ -68,10 +111,20 @@ impl<T> Vec<T> {
}
}
/**
* Partitions the vector into two vectors `(A,B)`, where all
* elements of `A` satisfy `f` and all elements of `B` do not.
*/
/// Consumes the `Vec`, partitioning it based on a predcate.
///
/// Partitions the `Vec` into two `Vec`s `(A,B)`, where all elements of `A`
/// satisfy `f` and all elements of `B` do not. The order of elements is
/// preserved.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3, 4);
/// let (even, odd) = vec.partition(|&n| n % 2 == 0);
/// assert_eq!(even, vec!(2, 4));
/// assert_eq!(odd, vec!(1, 3));
/// ```
#[inline]
pub fn partition(self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
let mut lefts = Vec::new();
@ -90,10 +143,29 @@ impl<T> Vec<T> {
}
impl<T: Clone> Vec<T> {
/// Constructs a `Vec` by cloning elements of a slice.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let slice = [1, 2, 3];
/// let vec = Vec::from_slice(slice);
/// ```
pub fn from_slice(values: &[T]) -> Vec<T> {
values.iter().map(|x| x.clone()).collect()
}
/// Constructs a `Vec` with copies of a value.
///
/// Creates a `Vec` with `length` copies of `value`.
///
/// # Example
/// ```rust
/// # use std::vec_ng::Vec;
/// let vec = Vec::from_elem(3, "hi");
/// println!("{}", vec); // prints [hi, hi, hi]
/// ```
pub fn from_elem(length: uint, value: T) -> Vec<T> {
unsafe {
let mut xs = Vec::with_capacity(length);
@ -105,6 +177,18 @@ impl<T: Clone> Vec<T> {
}
}
/// Appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` vector is traversed in-order.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1);
/// vec.push_all([2, 3, 4]);
/// assert_eq!(vec, vec!(1, 2, 3, 4));
/// ```
#[inline]
pub fn push_all(&mut self, other: &[T]) {
for element in other.iter() {
@ -112,26 +196,65 @@ impl<T: Clone> Vec<T> {
}
}
pub fn grow(&mut self, n: uint, initval: &T) {
/// Grows the `Vec` in-place.
///
/// Adds `n` copies of `value` to the `Vec`.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!("hello");
/// vec.grow(2, & &"world");
/// assert_eq!(vec, vec!("hello", "world", "world"));
/// ```
pub fn grow(&mut self, n: uint, value: &T) {
let new_len = self.len() + n;
self.reserve(new_len);
let mut i: uint = 0u;
while i < n {
self.push((*initval).clone());
self.push((*value).clone());
i += 1u;
}
}
pub fn grow_set(&mut self, index: uint, initval: &T, val: T) {
/// Sets the value of a vector element at a given index, growing the vector
/// as needed.
///
/// Sets the element at position `index` to `value`. If `index` is past the
/// end of the vector, expands the vector by replicating `initval` to fill
/// the intervening space.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!("a", "b", "c");
/// vec.grow_set(1, & &"fill", "d");
/// vec.grow_set(4, & &"fill", "e");
/// assert_eq!(vec, vec!("a", "d", "c", "fill", "e"));
/// ```
pub fn grow_set(&mut self, index: uint, initval: &T, value: T) {
let l = self.len();
if index >= l {
self.grow(index - l + 1u, initval);
}
*self.get_mut(index) = val;
*self.get_mut(index) = value;
}
/// Partitions a vector based on a predcate.
///
/// Clones the elements of the vector, partitioning them into two `Vec`s
/// `(A,B)`, where all elements of `A` satisfy `f` and all elements of `B`
/// do not. The order of elements is preserved.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3, 4);
/// let (even, odd) = vec.partitioned(|&n| n % 2 == 0);
/// assert_eq!(even, vec!(2, 4));
/// assert_eq!(odd, vec!(1, 3));
/// ```
pub fn partitioned(&self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
let mut lefts = Vec::new();
let mut rights = Vec::new();
@ -215,11 +338,36 @@ impl<T> Container for Vec<T> {
}
impl<T> Vec<T> {
/// Returns the number of elements the vector can hold without
/// reallocating.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let vec: Vec<int> = Vec::with_capacity(10);
/// assert_eq!(vec.capacity(), 10);
/// ```
#[inline]
pub fn capacity(&self) -> uint {
self.cap
}
/// Reserves capacity for at least `n` additional elements in the given
/// vector.
///
/// # Failure
///
/// Fails if the new capacity overflows `uint`.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let mut vec: Vec<int> = vec!(1);
/// vec.reserve_additional(10);
/// assert!(vec.capacity() >= 11);
/// ```
pub fn reserve_additional(&mut self, extra: uint) {
if self.cap - self.len < extra {
match self.len.checked_add(&extra) {
@ -229,12 +377,41 @@ impl<T> Vec<T> {
}
}
/// Reserves capacity for at least `n` elements in the given vector.
///
/// This function will over-allocate in order to amortize the allocation
/// costs in scenarios where the caller may need to repeatedly reserve
/// additional space.
///
/// If the capacity for `self` is already equal to or greater than the
/// requested capacity, then no action is taken.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.reserve(10);
/// assert!(vec.capacity() >= 10);
/// ```
pub fn reserve(&mut self, capacity: uint) {
if capacity >= self.len {
self.reserve_exact(num::next_power_of_two(capacity))
}
}
/// Reserves capacity for exactly `capacity` elements in the given vector.
///
/// If the capacity for `self` is already equal to or greater than the
/// requested capacity, then no action is taken.
///
/// # Example
///
/// ```rust
/// # use std::vec_ng::Vec;
/// let mut vec: Vec<int> = Vec::with_capacity(10);
/// vec.reserve_exact(11);
/// assert_eq!(vec.capacity(), 11);
/// ```
pub fn reserve_exact(&mut self, capacity: uint) {
if capacity >= self.len {
let size = capacity.checked_mul(&size_of::<T>()).expect("capacity overflow");
@ -245,6 +422,15 @@ impl<T> Vec<T> {
}
}
/// Shrink the capacity of the vector to match the length
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.shrink_to_fit();
/// assert_eq!(vec.capacity(), vec.len());
/// ```
pub fn shrink_to_fit(&mut self) {
if self.len == 0 {
unsafe { free(self.ptr as *mut c_void) };
@ -259,6 +445,16 @@ impl<T> Vec<T> {
}
}
/// Remove the last element from a vector and return it, or `None` if it is
/// empty.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec, vec!(1, 2));
/// ```
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
@ -271,6 +467,19 @@ impl<T> Vec<T> {
}
}
/// Append an element to a vector.
///
/// # Failure
///
/// Fails if the number of elements in the vector overflows a `uint`.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2);
/// vec.push(3);
/// assert_eq!(vec, vec!(1, 2, 3));
/// ```
#[inline]
pub fn push(&mut self, value: T) {
if self.len == self.cap {
@ -291,6 +500,18 @@ impl<T> Vec<T> {
}
}
/// Shorten a vector, dropping excess elements.
///
/// If `len` is greater than the vector's current length, this has no
/// effect.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3, 4);
/// vec.truncate(2);
/// assert_eq!(vec, vec!(1, 2));
/// ```
pub fn truncate(&mut self, len: uint) {
unsafe {
let mut i = len;
@ -303,18 +524,51 @@ impl<T> Vec<T> {
self.len = len;
}
/// Work with `self` as a slice.
///
/// # Example
///
/// ```rust
/// fn foo(slice: &[int]) {}
///
/// let vec = vec!(1, 2);
/// foo(vec.as_slice());
/// ```
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [T] {
let slice = Slice { data: self.ptr as *T, len: self.len };
unsafe { transmute(slice) }
}
/// Work with `self` as a mutable slice.
///
/// # Example
///
/// ```rust
/// fn foo(slice: &mut [int]) {}
///
/// let mut vec = vec!(1, 2);
/// foo(vec.as_mut_slice());
/// ```
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] {
let slice = Slice { data: self.ptr as *T, len: self.len };
unsafe { transmute(slice) }
}
/// Creates a consuming iterator, that is, one that moves each
/// value out of the vector (from start to end). The vector cannot
/// be used after calling this.
///
/// # Example
///
/// ```rust
/// let v = vec!(~"a", ~"b");
/// for s in v.move_iter() {
/// // s has type ~str, not &~str
/// println!("{}", s);
/// }
/// ```
#[inline]
pub fn move_iter(self) -> MoveItems<T> {
unsafe {
@ -325,66 +579,204 @@ impl<T> Vec<T> {
}
}
#[inline]
pub fn move_rev_iter(self) -> Rev<MoveItems<T>> {
self.move_iter().rev()
}
/// Sets the length of a vector.
///
/// This will explicitly set the size of the vector, without actually
/// modifying its buffers, so it is up to the caller to ensure that the
/// vector is actually the specified size.
#[inline]
pub unsafe fn set_len(&mut self, len: uint) {
self.len = len;
}
/// Returns a reference to the value at index `index`.
///
/// # Failure
///
/// Fails if `index` is out of bounds
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.get(1) == &2);
/// ```
#[inline]
pub fn get<'a>(&'a self, index: uint) -> &'a T {
&self.as_slice()[index]
}
/// Returns a mutable reference to the value at index `index`.
///
/// # Failure
///
/// Fails if `index` is out of bounds
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// *vec.get_mut(1) = 4;
/// assert_eq!(vec, vec!(1, 4, 3));
/// ```
#[inline]
pub fn get_mut<'a>(&'a mut self, index: uint) -> &'a mut T {
&mut self.as_mut_slice()[index]
}
/// Returns an iterator over references to the elements of the vector in
/// order.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// for num in vec.iter() {
/// println!("{}", *num);
/// }
/// ```
#[inline]
pub fn iter<'a>(&'a self) -> Items<'a,T> {
self.as_slice().iter()
}
/// Returns an iterator over mutable references to the elements of the
/// vector in order.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// for num in vec.mut_iter() {
/// *num = 0;
/// }
/// ```
#[inline]
pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a,T> {
self.as_mut_slice().mut_iter()
}
/// Sort the vector, in place, using `compare` to compare elements.
///
/// This sort is `O(n log n)` worst-case and stable, but allocates
/// approximately `2 * n`, where `n` is the length of `self`.
///
/// # Example
///
/// ```rust
/// let mut v = vec!(5i, 4, 1, 3, 2);
/// v.sort_by(|a, b| a.cmp(b));
/// assert_eq!(v, vec!(1, 2, 3, 4, 5));
///
/// // reverse sorting
/// v.sort_by(|a, b| b.cmp(a));
/// assert_eq!(v, vec!(5, 4, 3, 2, 1));
/// ```
#[inline]
pub fn sort_by(&mut self, compare: |&T, &T| -> Ordering) {
self.as_mut_slice().sort_by(compare)
}
/// Returns a slice of `self` between `start` and `end`.
///
/// # Failure
///
/// Fails when `start` or `end` point outside the bounds of `self`, or when
/// `start` > `end`.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3, 4);
/// assert!(vec.slice(0, 2) == [1, 2]);
/// ```
#[inline]
pub fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T] {
self.as_slice().slice(start, end)
}
/// Returns a slice containing all but the first element of the vector.
///
/// # Failure
///
/// Fails when the vector is empty.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.tail() == [2, 3]);
/// ```
#[inline]
pub fn tail<'a>(&'a self) -> &'a [T] {
self.as_slice().tail()
}
/// Returns all but the first `n' elements of a vector.
///
/// # Failure
///
/// Fails when there are fewer than `n` elements in the vector.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3, 4);
/// assert!(vec.tailn(2) == [3, 4]);
/// ```
#[inline]
pub fn tailn<'a>(&'a self, n: uint) -> &'a [T] {
self.as_slice().tailn(n)
}
/// Returns a reference to the last element of a vector, or `None` if it is
/// empty.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.last() == Some(&3));
/// ```
#[inline]
pub fn last<'a>(&'a self) -> Option<&'a T> {
self.as_slice().last()
}
/// Returns a mutable reference to the last element of a vector, or `None`
/// if it is empty.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// *vec.mut_last().unwrap() = 4;
/// assert_eq!(vec, vec!(1, 2, 4));
/// ```
#[inline]
pub fn mut_last<'a>(&'a mut self) -> Option<&'a mut T> {
self.as_mut_slice().mut_last()
}
/// Remove an element from anywhere in the vector and return it, replacing
/// it with the last element. This does not preserve ordering, but is O(1).
///
/// Returns `None` if `index` is out of bounds.
///
/// # Example
/// ```rust
/// let mut v = ~[~"foo", ~"bar", ~"baz", ~"qux"];
///
/// assert_eq!(v.swap_remove(1), Some(~"bar"));
/// assert_eq!(v, ~[~"foo", ~"qux", ~"baz"]);
///
/// assert_eq!(v.swap_remove(0), Some(~"foo"));
/// assert_eq!(v, ~[~"baz", ~"qux"]);
///
/// assert_eq!(v.swap_remove(2), None);
/// ```
#[inline]
pub fn swap_remove(&mut self, index: uint) -> Option<T> {
let length = self.len();
@ -396,16 +788,59 @@ impl<T> Vec<T> {
self.pop()
}
/// Prepend an element to the vector.
///
/// # Warning
///
/// This is an O(n) operation as it requires copying every element in the
/// vector.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.unshift(4);
/// assert_eq!(vec, vec!(4, 1, 2, 3));
/// ```
#[inline]
pub fn unshift(&mut self, element: T) {
self.insert(0, element)
}
/// Removes the first element from a vector and returns it, or `None` if
/// the vector is empty.
///
/// # Warning
///
/// This is an O(n) operation as it requires copying every element in the
/// vector.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// assert!(vec.shift() == Some(1));
/// assert_eq!(vec, vec!(2, 3));
/// ```
#[inline]
pub fn shift(&mut self) -> Option<T> {
self.remove(0)
}
/// Insert an element at position `index` within the vector, shifting all
/// elements after position i one position to the right.
///
/// # Failure
///
/// Fails if `index` is out of bounds of the vector.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.insert(1, 4);
/// assert_eq!(vec, vec!(1, 4, 2, 3));
/// ```
pub fn insert(&mut self, index: uint, element: T) {
let len = self.len();
assert!(index <= len);
@ -427,6 +862,21 @@ impl<T> Vec<T> {
}
}
/// Remove and return the element at position `index` within the vector,
/// shifting all elements after position `index` one position to the left.
/// Returns `None` if `i` is out of bounds.
///
/// # Example
///
/// ```rust
/// let mut v = ~[1, 2, 3];
/// assert_eq!(v.remove(1), Some(2));
/// assert_eq!(v, ~[1, 3]);
///
/// assert_eq!(v.remove(4), None);
/// // v is unchanged:
/// assert_eq!(v, ~[1, 3]);
/// ```
pub fn remove(&mut self, index: uint) -> Option<T> {
let len = self.len();
if index < len {
@ -450,62 +900,153 @@ impl<T> Vec<T> {
}
}
#[inline]
pub fn rev_iter<'a>(&'a self) -> RevItems<'a,T> {
self.as_slice().rev_iter()
}
///Apply a function to each element of a vector and return the results.
#[inline]
#[deprecated="Use `xs.iter().map(closure)` instead."]
pub fn map<U>(&self, f: |t: &T| -> U) -> Vec<U> {
self.iter().map(f).collect()
}
/// Takes ownership of the vector `other`, moving all elements into
/// the current vector. This does not copy any elements, and it is
/// illegal to use the `other` vector after calling this method
/// (because it is moved here).
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(~1);
/// vec.push_all_move(vec!(~2, ~3, ~4));
/// assert_eq!(vec, vec!(~1, ~2, ~3, ~4));
/// ```
pub fn push_all_move(&mut self, other: Vec<T>) {
for element in other.move_iter() {
self.push(element)
}
}
/// Returns a mutable slice of `self` between `start` and `end`.
///
/// # Failure
///
/// Fails when `start` or `end` point outside the bounds of `self`, or when
/// `start` > `end`.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 3, 4);
/// assert!(vec.mut_slice(0, 2) == [1, 2]);
/// ```
#[inline]
pub fn mut_slice<'a>(&'a mut self, start: uint, end: uint)
-> &'a mut [T] {
-> &'a mut [T] {
self.as_mut_slice().mut_slice(start, end)
}
/// Reverse the order of elements in a vector, in place.
///
/// # Example
///
/// ```rust
/// let mut v = vec!(1, 2, 3);
/// v.reverse();
/// assert_eq!(v, vec!(3, 2, 1));
/// ```
#[inline]
pub fn reverse(&mut self) {
self.as_mut_slice().reverse()
}
/// Returns a slice of `self` from `start` to the end of the vec.
///
/// # Failure
///
/// Fails when `start` points outside the bounds of self.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.slice_from(1) == [2, 3]);
/// ```
#[inline]
pub fn slice_from<'a>(&'a self, start: uint) -> &'a [T] {
self.as_slice().slice_from(start)
}
/// Returns a slice of self from the start of the vec to `end`.
///
/// # Failure
///
/// Fails when `end` points outside the bounds of self.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.slice_to(2) == [1, 2]);
/// ```
#[inline]
pub fn slice_to<'a>(&'a self, end: uint) -> &'a [T] {
self.as_slice().slice_to(end)
}
/// Returns a slice containing all but the last element of the vector.
///
/// # Failure
///
/// Fails if the vector is empty
#[inline]
pub fn init<'a>(&'a self) -> &'a [T] {
self.slice(0, self.len() - 1)
}
/// Returns an unsafe pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the vector may cause its buffer to be reallocated, which
/// would also make any pointers to it invalid.
#[inline]
pub fn as_ptr(&self) -> *T {
self.as_slice().as_ptr()
}
/// Returns a mutable unsafe pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the vector may cause its buffer to be reallocated, which
/// would also make any pointers to it invalid.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
self.as_mut_slice().as_mut_ptr()
}
}
impl<T:TotalOrd> Vec<T> {
/// Sorts the vector in place.
///
/// This sort is `O(n log n)` worst-case and stable, but allocates
/// approximately `2 * n`, where `n` is the length of `self`.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(3i, 1, 2);
/// vec.sort();
/// assert_eq!(vec, vec!(1, 2, 3));
/// ```
pub fn sort(&mut self) {
self.as_mut_slice().sort()
}
}
impl<T> Mutable for Vec<T> {
/// Clear the vector, removing all values.
#[inline]
fn clear(&mut self) {
self.truncate(0)
@ -514,10 +1055,28 @@ impl<T> Mutable for Vec<T> {
impl<T:Eq> Vec<T> {
/// Return true if a vector contains an element with the given value
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2, 3);
/// assert!(vec.contains(&1));
/// ```
pub fn contains(&self, x: &T) -> bool {
self.as_slice().contains(x)
}
/// Remove consecutive repeated elements in the vector.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Example
///
/// ```rust
/// let mut vec = vec!(1, 2, 2, 3, 2);
/// vec.dedup();
/// assert_eq!(vec, vec!(1, 2, 3, 2));
/// ```
pub fn dedup(&mut self) {
unsafe {
// Although we have a mutable reference to `self`, we cannot make
@ -603,6 +1162,16 @@ impl<T:Eq> Vec<T> {
}
}
/// Iterates over the `second` vector, copying each element and appending it to
/// the `first`. Afterwards, the `first` is then returned for use again.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2);
/// let vec = std::vec_ng::append(vec, [3, 4]);
/// assert_eq!(vec, vec!(1, 2, 3, 4));
/// ```
#[inline]
pub fn append<T:Clone>(mut first: Vec<T>, second: &[T]) -> Vec<T> {
first.push_all(second);
@ -611,6 +1180,14 @@ pub fn append<T:Clone>(mut first: Vec<T>, second: &[T]) -> Vec<T> {
/// Appends one element to the vector provided. The vector itself is then
/// returned for use again.
///
/// # Example
///
/// ```rust
/// let vec = vec!(1, 2);
/// let vec = std::vec_ng::append_one(vec, 3);
/// assert_eq!(vec, vec!(1, 2, 3));
/// ```
#[inline]
pub fn append_one<T>(mut lhs: Vec<T>, x: T) -> Vec<T> {
lhs.push(x);
@ -643,6 +1220,7 @@ impl<T:fmt::Show> fmt::Show for Vec<T> {
}
}
/// An iterator that moves out of a vector.
pub struct MoveItems<T> {
priv allocation: *mut c_void, // the block of memory allocated for the vector
priv iter: Items<'static, T>

View file

@ -1158,7 +1158,7 @@ pub fn cs_fold(use_foldl: bool,
field.other.as_slice())
})
} else {
all_fields.rev_iter().fold(base, |old, field| {
all_fields.iter().rev().fold(base, |old, field| {
f(cx,
field.span,
old,
@ -1235,7 +1235,7 @@ pub fn cs_same_method_fold(use_foldl: bool,
f(cx, span, old, new)
})
} else {
vals.rev_iter().fold(base, |old, &new| {
vals.iter().rev().fold(base, |old, &new| {
f(cx, span, old, new)
})
}

View file

@ -60,7 +60,7 @@ pub fn expand_meta_deriving(cx: &mut ExtCtxt,
cx.span_warn(mitem.span, "empty trait list in `deriving`");
}
MetaList(_, ref titems) => {
for &titem in titems.rev_iter() {
for &titem in titems.iter().rev() {
match titem.node {
MetaNameValue(ref tname, _) |
MetaList(ref tname, _) |

View file

@ -264,7 +264,7 @@ pub fn expand_item(it: @ast::Item, fld: &mut MacroExpander)
let it = expand_item_modifiers(it, fld);
let mut decorator_items = SmallVector::zero();
for attr in it.attrs.rev_iter() {
for attr in it.attrs.iter().rev() {
let mname = attr.name();
match fld.extsbox.find(&intern(mname.get())) {

View file

@ -309,7 +309,7 @@ mod tests {
// returning the resulting index
fn unfold_test_sc(tscs : Vec<TestSC> , tail: SyntaxContext, table: &SCTable)
-> SyntaxContext {
tscs.rev_iter().fold(tail, |tail : SyntaxContext, tsc : &TestSC|
tscs.iter().rev().fold(tail, |tail : SyntaxContext, tsc : &TestSC|
{match *tsc {
M(mrk) => new_mark_internal(mrk,tail,table),
R(ident,name) => new_rename_internal(ident,name,tail,table)}})
@ -355,7 +355,7 @@ mod tests {
// in a vector. v[0] will be the outermost mark.
fn unfold_marks(mrks: Vec<Mrk> , tail: SyntaxContext, table: &SCTable)
-> SyntaxContext {
mrks.rev_iter().fold(tail, |tail:SyntaxContext, mrk:&Mrk|
mrks.iter().rev().fold(tail, |tail:SyntaxContext, mrk:&Mrk|
{new_mark_internal(*mrk,tail,table)})
}