Track ABI info. in NaiveLayout, and use it for PointerLike checks

THis significantly complicates `NaiveLayout` logic, but is necessary to
ensure that bounds like `NonNull<T>: PointerLike` hold in generic
contexts.

Also implement exact layout computation for structs.
This commit is contained in:
Moulins 2023-06-29 03:55:09 +02:00
parent c30fbb95a6
commit feb20f2fe7
5 changed files with 231 additions and 93 deletions

View file

@ -15,7 +15,7 @@ use rustc_target::abi::call::FnAbi;
use rustc_target::abi::*;
use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target};
use std::cmp::{self, Ordering};
use std::cmp;
use std::fmt;
use std::num::NonZeroUsize;
use std::ops::Bound;
@ -316,8 +316,8 @@ impl<'tcx> SizeSkeleton<'tcx> {
// First, try computing an exact naive layout (this covers simple types with generic
// references, where a full static layout would fail).
if let Ok(layout) = tcx.naive_layout_of(param_env.and(ty)) {
if layout.is_exact {
return Ok(SizeSkeleton::Known(layout.min_size));
if layout.exact {
return Ok(SizeSkeleton::Known(layout.size));
}
}
@ -650,51 +650,146 @@ impl std::ops::DerefMut for TyAndNaiveLayout<'_> {
}
}
/// A naive underestimation of the layout of a type.
/// Extremely simplified representation of a type's layout.
///
///
#[derive(Copy, Clone, Debug, HashStable)]
pub struct NaiveLayout {
pub min_size: Size,
pub min_align: Align,
// If `true`, `min_size` and `min_align` are guaranteed to be exact.
pub is_exact: bool,
pub abi: NaiveAbi,
pub size: Size,
pub align: Align,
/// If `true`, `size` and `align` are exact.
pub exact: bool,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable)]
pub enum NaiveAbi {
/// A scalar layout, always implies `exact`.
Scalar(Primitive),
/// An uninhabited layout. (needed to properly track `Scalar`)
Uninhabited,
/// An unsized aggregate. (needed to properly track `Scalar`)
Unsized,
Any,
}
impl NaiveAbi {
#[inline]
pub fn as_aggregate(self) -> Self {
match self {
NaiveAbi::Scalar(_) => NaiveAbi::Any,
_ => self,
}
}
}
impl NaiveLayout {
pub const UNKNOWN: Self = Self { min_size: Size::ZERO, min_align: Align::ONE, is_exact: false };
pub const EMPTY: Self = Self { min_size: Size::ZERO, min_align: Align::ONE, is_exact: true };
pub const EMPTY: Self =
Self { size: Size::ZERO, align: Align::ONE, exact: true, abi: NaiveAbi::Any };
pub fn is_compatible_with(&self, layout: Layout<'_>) -> bool {
let cmp = |cmp: Ordering| match (cmp, self.is_exact) {
(Ordering::Less | Ordering::Equal, false) => true,
(Ordering::Equal, true) => true,
(_, _) => false,
};
pub fn is_refined_by(&self, layout: Layout<'_>) -> bool {
if self.size > layout.size() || self.align > layout.align().abi {
return false;
}
cmp(self.min_size.cmp(&layout.size())) && cmp(self.min_align.cmp(&layout.align().abi))
if let NaiveAbi::Scalar(prim) = self.abi {
assert!(self.exact);
if !matches!(layout.abi(), Abi::Scalar(s) if s.primitive() == prim) {
return false;
}
}
!self.exact || (self.size, self.align) == (layout.size(), layout.align().abi)
}
/// Returns if this layout is known to be pointer-like (`None` if uncertain)
///
/// See the corresponding `Layout::is_pointer_like` method.
pub fn is_pointer_like(&self, dl: &TargetDataLayout) -> Option<bool> {
match self.abi {
NaiveAbi::Scalar(_) => {
assert!(self.exact);
Some(self.size == dl.pointer_size && self.align == dl.pointer_align.abi)
}
NaiveAbi::Uninhabited | NaiveAbi::Unsized => Some(false),
NaiveAbi::Any if self.exact => Some(false),
NaiveAbi::Any => None,
}
}
#[must_use]
pub fn pad_to_align(mut self) -> Self {
self.min_size = self.min_size.align_to(self.min_align);
#[inline]
pub fn packed(mut self, align: Align) -> Self {
if self.align > align {
self.align = align;
self.abi = self.abi.as_aggregate();
}
self
}
#[must_use]
pub fn concat<C: HasDataLayout>(&self, other: &Self, cx: &C) -> Option<Self> {
Some(Self {
min_size: self.min_size.checked_add(other.min_size, cx)?,
min_align: std::cmp::max(self.min_align, other.min_align),
is_exact: self.is_exact && other.is_exact,
})
#[inline]
pub fn align_to(mut self, align: Align) -> Self {
if align > self.align {
self.align = align;
self.abi = self.abi.as_aggregate();
}
self
}
#[must_use]
pub fn union(&self, other: &Self) -> Self {
Self {
min_size: std::cmp::max(self.min_size, other.min_size),
min_align: std::cmp::max(self.min_align, other.min_align),
is_exact: self.is_exact && other.is_exact,
#[inline]
pub fn pad_to_align(mut self, align: Align) -> Self {
let new_size = self.size.align_to(align);
if new_size > self.size {
self.abi = self.abi.as_aggregate();
self.size = new_size;
}
self
}
#[must_use]
#[inline]
pub fn concat(&self, other: &Self, dl: &TargetDataLayout) -> Option<Self> {
use NaiveAbi::*;
let size = self.size.checked_add(other.size, dl)?;
let align = cmp::max(self.align, other.align);
let exact = self.exact && other.exact;
let abi = match (self.abi, other.abi) {
// The uninhabited and unsized ABIs override everything.
(Uninhabited, _) | (_, Uninhabited) => Uninhabited,
(Unsized, _) | (_, Unsized) => Unsized,
// A scalar struct must have a single non ZST-field.
(_, s @ Scalar(_)) if exact && self.size == Size::ZERO => s,
(s @ Scalar(_), _) if exact && other.size == Size::ZERO => s,
// Default case.
(_, _) => Any,
};
Some(Self { abi, size, align, exact })
}
#[must_use]
#[inline]
pub fn union(&self, other: &Self) -> Self {
use NaiveAbi::*;
let size = cmp::max(self.size, other.size);
let align = cmp::max(self.align, other.align);
let exact = self.exact && other.exact;
let abi = match (self.abi, other.abi) {
// The unsized ABI overrides everything.
(Unsized, _) | (_, Unsized) => Unsized,
// A scalar union must have a single non ZST-field.
(_, s @ Scalar(_)) if exact && self.size == Size::ZERO => s,
(s @ Scalar(_), _) if exact && other.size == Size::ZERO => s,
// ...or identical scalar fields.
(Scalar(s1), Scalar(s2)) if s1 == s2 => Scalar(s1),
// Default cases.
(Uninhabited, Uninhabited) => Uninhabited,
(_, _) => Any,
};
Self { abi, size, align, exact }
}
}