1
Fork 0

Add 'library/portable-simd/' from commit '1ce1c645cf'

git-subtree-dir: library/portable-simd
git-subtree-mainline: efd0483949
git-subtree-split: 1ce1c645cf
This commit is contained in:
Jubilee Young 2021-11-12 16:58:25 -08:00
commit fdee059c90
78 changed files with 7502 additions and 0 deletions

View file

@ -0,0 +1,97 @@
//! Generic-length array strategy.
// Adapted from proptest's array code
// Copyright 2017 Jason Lingle
use core::{marker::PhantomData, mem::MaybeUninit};
use proptest::{
strategy::{NewTree, Strategy, ValueTree},
test_runner::TestRunner,
};
#[must_use = "strategies do nothing unless used"]
#[derive(Clone, Copy, Debug)]
pub struct UniformArrayStrategy<S, T> {
strategy: S,
_marker: PhantomData<T>,
}
impl<S, T> UniformArrayStrategy<S, T> {
pub const fn new(strategy: S) -> Self {
Self {
strategy,
_marker: PhantomData,
}
}
}
pub struct ArrayValueTree<T> {
tree: T,
shrinker: usize,
last_shrinker: Option<usize>,
}
impl<T, S, const LANES: usize> Strategy for UniformArrayStrategy<S, [T; LANES]>
where
T: core::fmt::Debug,
S: Strategy<Value = T>,
{
type Tree = ArrayValueTree<[S::Tree; LANES]>;
type Value = [T; LANES];
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
let tree: [S::Tree; LANES] = unsafe {
let mut tree: [MaybeUninit<S::Tree>; LANES] = MaybeUninit::uninit().assume_init();
for t in tree.iter_mut() {
*t = MaybeUninit::new(self.strategy.new_tree(runner)?)
}
core::mem::transmute_copy(&tree)
};
Ok(ArrayValueTree {
tree,
shrinker: 0,
last_shrinker: None,
})
}
}
impl<T: ValueTree, const LANES: usize> ValueTree for ArrayValueTree<[T; LANES]> {
type Value = [T::Value; LANES];
fn current(&self) -> Self::Value {
unsafe {
let mut value: [MaybeUninit<T::Value>; LANES] = MaybeUninit::uninit().assume_init();
for (tree_elem, value_elem) in self.tree.iter().zip(value.iter_mut()) {
*value_elem = MaybeUninit::new(tree_elem.current());
}
core::mem::transmute_copy(&value)
}
}
fn simplify(&mut self) -> bool {
while self.shrinker < LANES {
if self.tree[self.shrinker].simplify() {
self.last_shrinker = Some(self.shrinker);
return true;
} else {
self.shrinker += 1;
}
}
false
}
fn complicate(&mut self) -> bool {
if let Some(shrinker) = self.last_shrinker {
self.shrinker = shrinker;
if self.tree[shrinker].complicate() {
true
} else {
self.last_shrinker = None;
false
}
} else {
false
}
}
}

View file

@ -0,0 +1,106 @@
//! Compare numeric types by exact bit value.
pub trait BitEq {
fn biteq(&self, other: &Self) -> bool;
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result;
}
impl BitEq for bool {
fn biteq(&self, other: &Self) -> bool {
self == other
}
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{:?}", self)
}
}
macro_rules! impl_integer_biteq {
{ $($type:ty),* } => {
$(
impl BitEq for $type {
fn biteq(&self, other: &Self) -> bool {
self == other
}
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{:?} ({:x})", self, self)
}
}
)*
};
}
impl_integer_biteq! { u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize }
macro_rules! impl_float_biteq {
{ $($type:ty),* } => {
$(
impl BitEq for $type {
fn biteq(&self, other: &Self) -> bool {
if self.is_nan() && other.is_nan() {
true // exact nan bits don't matter
} else {
self.to_bits() == other.to_bits()
}
}
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{:?} ({:x})", self, self.to_bits())
}
}
)*
};
}
impl_float_biteq! { f32, f64 }
impl<T: BitEq, const N: usize> BitEq for [T; N] {
fn biteq(&self, other: &Self) -> bool {
self.iter()
.zip(other.iter())
.fold(true, |value, (left, right)| value && left.biteq(right))
}
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
#[repr(transparent)]
struct Wrapper<'a, T: BitEq>(&'a T);
impl<T: BitEq> core::fmt::Debug for Wrapper<'_, T> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
self.0.fmt(f)
}
}
f.debug_list()
.entries(self.iter().map(|x| Wrapper(x)))
.finish()
}
}
#[doc(hidden)]
pub struct BitEqWrapper<'a, T>(pub &'a T);
impl<T: BitEq> PartialEq for BitEqWrapper<'_, T> {
fn eq(&self, other: &Self) -> bool {
self.0.biteq(other.0)
}
}
impl<T: BitEq> core::fmt::Debug for BitEqWrapper<'_, T> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
self.0.fmt(f)
}
}
#[macro_export]
macro_rules! prop_assert_biteq {
{ $a:expr, $b:expr $(,)? } => {
{
use $crate::biteq::BitEqWrapper;
let a = $a;
let b = $b;
proptest::prop_assert_eq!(BitEqWrapper(&a), BitEqWrapper(&b));
}
}
}

View file

@ -0,0 +1,437 @@
pub mod array;
#[cfg(target_arch = "wasm32")]
pub mod wasm;
#[macro_use]
pub mod biteq;
/// Specifies the default strategy for testing a type.
///
/// This strategy should be what "makes sense" to test.
pub trait DefaultStrategy {
type Strategy: proptest::strategy::Strategy<Value = Self>;
fn default_strategy() -> Self::Strategy;
}
macro_rules! impl_num {
{ $type:tt } => {
impl DefaultStrategy for $type {
type Strategy = proptest::num::$type::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::$type::ANY
}
}
}
}
impl_num! { i8 }
impl_num! { i16 }
impl_num! { i32 }
impl_num! { i64 }
impl_num! { isize }
impl_num! { u8 }
impl_num! { u16 }
impl_num! { u32 }
impl_num! { u64 }
impl_num! { usize }
impl_num! { f32 }
impl_num! { f64 }
#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for u128 {
type Strategy = proptest::num::u128::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::u128::ANY
}
}
#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for i128 {
type Strategy = proptest::num::i128::Any;
fn default_strategy() -> Self::Strategy {
proptest::num::i128::ANY
}
}
#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for u128 {
type Strategy = crate::wasm::u128::Any;
fn default_strategy() -> Self::Strategy {
crate::wasm::u128::ANY
}
}
#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for i128 {
type Strategy = crate::wasm::i128::Any;
fn default_strategy() -> Self::Strategy {
crate::wasm::i128::ANY
}
}
impl<T: core::fmt::Debug + DefaultStrategy, const LANES: usize> DefaultStrategy for [T; LANES] {
type Strategy = crate::array::UniformArrayStrategy<T::Strategy, Self>;
fn default_strategy() -> Self::Strategy {
Self::Strategy::new(T::default_strategy())
}
}
/// Test a function that takes a single value.
pub fn test_1<A: core::fmt::Debug + DefaultStrategy>(
f: &dyn Fn(A) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = proptest::test_runner::TestRunner::default();
runner.run(&A::default_strategy(), f).unwrap();
}
/// Test a function that takes two values.
pub fn test_2<A: core::fmt::Debug + DefaultStrategy, B: core::fmt::Debug + DefaultStrategy>(
f: &dyn Fn(A, B) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = proptest::test_runner::TestRunner::default();
runner
.run(&(A::default_strategy(), B::default_strategy()), |(a, b)| {
f(a, b)
})
.unwrap();
}
/// Test a function that takes two values.
pub fn test_3<
A: core::fmt::Debug + DefaultStrategy,
B: core::fmt::Debug + DefaultStrategy,
C: core::fmt::Debug + DefaultStrategy,
>(
f: &dyn Fn(A, B, C) -> proptest::test_runner::TestCaseResult,
) {
let mut runner = proptest::test_runner::TestRunner::default();
runner
.run(
&(
A::default_strategy(),
B::default_strategy(),
C::default_strategy(),
),
|(a, b, c)| f(a, b, c),
)
.unwrap();
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_unary_elementwise<Scalar, ScalarResult, Vector, VectorResult, const LANES: usize>(
fv: &dyn Fn(Vector) -> VectorResult,
fs: &dyn Fn(Scalar) -> ScalarResult,
check: &dyn Fn([Scalar; LANES]) -> bool,
) where
Scalar: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_1(&|x: [Scalar; LANES]| {
proptest::prop_assume!(check(x));
let result_1: [ScalarResult; LANES] = fv(x.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for (i, o) in x.iter().zip(result.iter_mut()) {
*o = fs(*i);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_unary_mask_elementwise<Scalar, Vector, Mask, const LANES: usize>(
fv: &dyn Fn(Vector) -> Mask,
fs: &dyn Fn(Scalar) -> bool,
check: &dyn Fn([Scalar; LANES]) -> bool,
) where
Scalar: Copy + Default + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
Mask: Into<[bool; LANES]> + From<[bool; LANES]> + Copy,
{
test_1(&|x: [Scalar; LANES]| {
proptest::prop_assume!(check(x));
let result_1: [bool; LANES] = fv(x.into()).into();
let result_2: [bool; LANES] = {
let mut result = [false; LANES];
for (i, o) in x.iter().zip(result.iter_mut()) {
*o = fs(*i);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector1,
Vector2,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector1, Vector2) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x.into(), y.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for ((i1, i2), o) in x.iter().zip(y.iter()).zip(result.iter_mut()) {
*o = fs(*i1, *i2);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_rhs_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector, Scalar2) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], Scalar2) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: [Scalar1; LANES], y: Scalar2| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x.into(), y).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for (i, o) in x.iter().zip(result.iter_mut()) {
*o = fs(*i, y);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_lhs_elementwise<
Scalar1,
Scalar2,
ScalarResult,
Vector,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Scalar1, Vector) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
check: &dyn Fn(Scalar1, [Scalar2; LANES]) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_2(&|x: Scalar1, y: [Scalar2; LANES]| {
proptest::prop_assume!(check(x, y));
let result_1: [ScalarResult; LANES] = fv(x, y.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for (i, o) in y.iter().zip(result.iter_mut()) {
*o = fs(x, *i);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
});
}
/// Test a ternary vector function against a ternary scalar function, applied elementwise.
#[inline(never)]
pub fn test_ternary_elementwise<
Scalar1,
Scalar2,
Scalar3,
ScalarResult,
Vector1,
Vector2,
Vector3,
VectorResult,
const LANES: usize,
>(
fv: &dyn Fn(Vector1, Vector2, Vector3) -> VectorResult,
fs: &dyn Fn(Scalar1, Scalar2, Scalar3) -> ScalarResult,
check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES], [Scalar3; LANES]) -> bool,
) where
Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
Scalar3: Copy + Default + core::fmt::Debug + DefaultStrategy,
ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
Vector3: Into<[Scalar3; LANES]> + From<[Scalar3; LANES]> + Copy,
VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
test_3(
&|x: [Scalar1; LANES], y: [Scalar2; LANES], z: [Scalar3; LANES]| {
proptest::prop_assume!(check(x, y, z));
let result_1: [ScalarResult; LANES] = fv(x.into(), y.into(), z.into()).into();
let result_2: [ScalarResult; LANES] = {
let mut result = [ScalarResult::default(); LANES];
for ((i1, (i2, i3)), o) in
x.iter().zip(y.iter().zip(z.iter())).zip(result.iter_mut())
{
*o = fs(*i1, *i2, *i3);
}
result
};
crate::prop_assert_biteq!(result_1, result_2);
Ok(())
},
);
}
/// Expand a const-generic test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes {
{
$(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
} => {
$(
mod $test {
use super::*;
fn implementation<const $lanes: usize>()
where
core_simd::LaneCount<$lanes>: core_simd::SupportedLaneCount,
$body
#[cfg(target_arch = "wasm32")]
wasm_bindgen_test::wasm_bindgen_test_configure!(run_in_browser);
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_1() {
implementation::<1>();
}
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_2() {
implementation::<2>();
}
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_4() {
implementation::<4>();
}
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_8() {
implementation::<8>();
}
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_16() {
implementation::<16>();
}
#[test]
#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
fn lanes_32() {
implementation::<32>();
}
}
)*
}
}
/// Expand a const-generic `#[should_panic]` test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes_panic {
{
$(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
} => {
$(
mod $test {
use super::*;
fn implementation<const $lanes: usize>()
where
core_simd::LaneCount<$lanes>: core_simd::SupportedLaneCount,
$body
#[test]
#[should_panic]
fn lanes_1() {
implementation::<1>();
}
#[test]
#[should_panic]
fn lanes_2() {
implementation::<2>();
}
#[test]
#[should_panic]
fn lanes_4() {
implementation::<4>();
}
#[test]
#[should_panic]
fn lanes_8() {
implementation::<8>();
}
#[test]
#[should_panic]
fn lanes_16() {
implementation::<16>();
}
#[test]
#[should_panic]
fn lanes_32() {
implementation::<32>();
}
}
)*
}
}

View file

@ -0,0 +1,51 @@
//! Strategies for `u128` and `i128`, since proptest doesn't provide them for the wasm target.
macro_rules! impl_num {
{ $name:ident } => {
pub(crate) mod $name {
type InnerStrategy = crate::array::UniformArrayStrategy<proptest::num::u64::Any, [u64; 2]>;
use proptest::strategy::{Strategy, ValueTree, NewTree};
#[must_use = "strategies do nothing unless used"]
#[derive(Clone, Copy, Debug)]
pub struct Any {
strategy: InnerStrategy,
}
pub struct BinarySearch {
inner: <InnerStrategy as Strategy>::Tree,
}
impl ValueTree for BinarySearch {
type Value = $name;
fn current(&self) -> $name {
unsafe { core::mem::transmute(self.inner.current()) }
}
fn simplify(&mut self) -> bool {
self.inner.simplify()
}
fn complicate(&mut self) -> bool {
self.inner.complicate()
}
}
impl Strategy for Any {
type Tree = BinarySearch;
type Value = $name;
fn new_tree(&self, runner: &mut proptest::test_runner::TestRunner) -> NewTree<Self> {
Ok(BinarySearch { inner: self.strategy.new_tree(runner)? })
}
}
pub const ANY: Any = Any { strategy: InnerStrategy::new(proptest::num::u64::ANY) };
}
}
}
impl_num! { u128 }
impl_num! { i128 }