1
Fork 0

Move the dataflow framework to its own crate.

This commit is contained in:
Camille GILLOT 2021-01-05 19:53:07 +01:00
parent 81a600b6b7
commit fd9c04fe32
74 changed files with 259 additions and 211 deletions

View file

@ -0,0 +1,61 @@
//! The move-analysis portion of borrowck needs to work in an abstract
//! domain of lifted `Place`s. Most of the `Place` variants fall into a
//! one-to-one mapping between the concrete and abstract (e.g., a
//! field-deref on a local variable, `x.field`, has the same meaning
//! in both domains). Indexed projections are the exception: `a[x]`
//! needs to be treated as mapping to the same move path as `a[y]` as
//! well as `a[13]`, etc.
//!
//! (In theory, the analysis could be extended to work with sets of
//! paths, so that `a[0]` and `a[13]` could be kept distinct, while
//! `a[x]` would still overlap them both. But that is not this
//! representation does today.)
use rustc_middle::mir::{Local, Operand, PlaceElem, ProjectionElem};
use rustc_middle::ty::Ty;
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct AbstractOperand;
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct AbstractType;
pub type AbstractElem = ProjectionElem<AbstractOperand, AbstractType>;
pub trait Lift {
type Abstract;
fn lift(&self) -> Self::Abstract;
}
impl<'tcx> Lift for Operand<'tcx> {
type Abstract = AbstractOperand;
fn lift(&self) -> Self::Abstract {
AbstractOperand
}
}
impl Lift for Local {
type Abstract = AbstractOperand;
fn lift(&self) -> Self::Abstract {
AbstractOperand
}
}
impl<'tcx> Lift for Ty<'tcx> {
type Abstract = AbstractType;
fn lift(&self) -> Self::Abstract {
AbstractType
}
}
impl<'tcx> Lift for PlaceElem<'tcx> {
type Abstract = AbstractElem;
fn lift(&self) -> Self::Abstract {
match *self {
ProjectionElem::Deref => ProjectionElem::Deref,
ProjectionElem::Field(f, ty) => ProjectionElem::Field(f, ty.lift()),
ProjectionElem::Index(ref i) => ProjectionElem::Index(i.lift()),
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Downcast(a, u) => ProjectionElem::Downcast(a, u),
}
}
}

View file

@ -0,0 +1,543 @@
use rustc_index::vec::IndexVec;
use rustc_middle::mir::tcx::RvalueInitializationState;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, TyCtxt};
use smallvec::{smallvec, SmallVec};
use std::iter;
use std::mem;
use super::abs_domain::Lift;
use super::IllegalMoveOriginKind::*;
use super::{Init, InitIndex, InitKind, InitLocation, LookupResult, MoveError};
use super::{
LocationMap, MoveData, MoveOut, MoveOutIndex, MovePath, MovePathIndex, MovePathLookup,
};
struct MoveDataBuilder<'a, 'tcx> {
body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
data: MoveData<'tcx>,
errors: Vec<(Place<'tcx>, MoveError<'tcx>)>,
}
impl<'a, 'tcx> MoveDataBuilder<'a, 'tcx> {
fn new(body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Self {
let mut move_paths = IndexVec::new();
let mut path_map = IndexVec::new();
let mut init_path_map = IndexVec::new();
MoveDataBuilder {
body,
tcx,
param_env,
errors: Vec::new(),
data: MoveData {
moves: IndexVec::new(),
loc_map: LocationMap::new(body),
rev_lookup: MovePathLookup {
locals: body
.local_decls
.indices()
.map(|i| {
Self::new_move_path(
&mut move_paths,
&mut path_map,
&mut init_path_map,
None,
Place::from(i),
)
})
.collect(),
projections: Default::default(),
},
move_paths,
path_map,
inits: IndexVec::new(),
init_loc_map: LocationMap::new(body),
init_path_map,
},
}
}
fn new_move_path(
move_paths: &mut IndexVec<MovePathIndex, MovePath<'tcx>>,
path_map: &mut IndexVec<MovePathIndex, SmallVec<[MoveOutIndex; 4]>>,
init_path_map: &mut IndexVec<MovePathIndex, SmallVec<[InitIndex; 4]>>,
parent: Option<MovePathIndex>,
place: Place<'tcx>,
) -> MovePathIndex {
let move_path =
move_paths.push(MovePath { next_sibling: None, first_child: None, parent, place });
if let Some(parent) = parent {
let next_sibling = mem::replace(&mut move_paths[parent].first_child, Some(move_path));
move_paths[move_path].next_sibling = next_sibling;
}
let path_map_ent = path_map.push(smallvec![]);
assert_eq!(path_map_ent, move_path);
let init_path_map_ent = init_path_map.push(smallvec![]);
assert_eq!(init_path_map_ent, move_path);
move_path
}
}
impl<'b, 'a, 'tcx> Gatherer<'b, 'a, 'tcx> {
/// This creates a MovePath for a given place, returning an `MovePathError`
/// if that place can't be moved from.
///
/// NOTE: places behind references *do not* get a move path, which is
/// problematic for borrowck.
///
/// Maybe we should have separate "borrowck" and "moveck" modes.
fn move_path_for(&mut self, place: Place<'tcx>) -> Result<MovePathIndex, MoveError<'tcx>> {
debug!("lookup({:?})", place);
let mut base = self.builder.data.rev_lookup.locals[place.local];
// The move path index of the first union that we find. Once this is
// some we stop creating child move paths, since moves from unions
// move the whole thing.
// We continue looking for other move errors though so that moving
// from `*(u.f: &_)` isn't allowed.
let mut union_path = None;
for (i, elem) in place.projection.iter().enumerate() {
let proj_base = &place.projection[..i];
let body = self.builder.body;
let tcx = self.builder.tcx;
let place_ty = Place::ty_from(place.local, proj_base, body, tcx).ty;
match place_ty.kind() {
ty::Ref(..) | ty::RawPtr(..) => {
let proj = &place.projection[..i + 1];
return Err(MoveError::cannot_move_out_of(
self.loc,
BorrowedContent {
target_place: Place {
local: place.local,
projection: tcx.intern_place_elems(proj),
},
},
));
}
ty::Adt(adt, _) if adt.has_dtor(tcx) && !adt.is_box() => {
return Err(MoveError::cannot_move_out_of(
self.loc,
InteriorOfTypeWithDestructor { container_ty: place_ty },
));
}
ty::Adt(adt, _) if adt.is_union() => {
union_path.get_or_insert(base);
}
ty::Slice(_) => {
return Err(MoveError::cannot_move_out_of(
self.loc,
InteriorOfSliceOrArray {
ty: place_ty,
is_index: matches!(elem, ProjectionElem::Index(..)),
},
));
}
ty::Array(..) => {
if let ProjectionElem::Index(..) = elem {
return Err(MoveError::cannot_move_out_of(
self.loc,
InteriorOfSliceOrArray { ty: place_ty, is_index: true },
));
}
}
_ => {}
};
if union_path.is_none() {
base = self.add_move_path(base, elem, |tcx| Place {
local: place.local,
projection: tcx.intern_place_elems(&place.projection[..i + 1]),
});
}
}
if let Some(base) = union_path {
// Move out of union - always move the entire union.
Err(MoveError::UnionMove { path: base })
} else {
Ok(base)
}
}
fn add_move_path(
&mut self,
base: MovePathIndex,
elem: PlaceElem<'tcx>,
mk_place: impl FnOnce(TyCtxt<'tcx>) -> Place<'tcx>,
) -> MovePathIndex {
let MoveDataBuilder {
data: MoveData { rev_lookup, move_paths, path_map, init_path_map, .. },
tcx,
..
} = self.builder;
*rev_lookup.projections.entry((base, elem.lift())).or_insert_with(move || {
MoveDataBuilder::new_move_path(
move_paths,
path_map,
init_path_map,
Some(base),
mk_place(*tcx),
)
})
}
fn create_move_path(&mut self, place: Place<'tcx>) {
// This is an non-moving access (such as an overwrite or
// drop), so this not being a valid move path is OK.
let _ = self.move_path_for(place);
}
}
impl<'a, 'tcx> MoveDataBuilder<'a, 'tcx> {
fn finalize(
self,
) -> Result<MoveData<'tcx>, (MoveData<'tcx>, Vec<(Place<'tcx>, MoveError<'tcx>)>)> {
debug!("{}", {
debug!("moves for {:?}:", self.body.span);
for (j, mo) in self.data.moves.iter_enumerated() {
debug!(" {:?} = {:?}", j, mo);
}
debug!("move paths for {:?}:", self.body.span);
for (j, path) in self.data.move_paths.iter_enumerated() {
debug!(" {:?} = {:?}", j, path);
}
"done dumping moves"
});
if !self.errors.is_empty() { Err((self.data, self.errors)) } else { Ok(self.data) }
}
}
pub(super) fn gather_moves<'tcx>(
body: &Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Result<MoveData<'tcx>, (MoveData<'tcx>, Vec<(Place<'tcx>, MoveError<'tcx>)>)> {
let mut builder = MoveDataBuilder::new(body, tcx, param_env);
builder.gather_args();
for (bb, block) in body.basic_blocks().iter_enumerated() {
for (i, stmt) in block.statements.iter().enumerate() {
let source = Location { block: bb, statement_index: i };
builder.gather_statement(source, stmt);
}
let terminator_loc = Location { block: bb, statement_index: block.statements.len() };
builder.gather_terminator(terminator_loc, block.terminator());
}
builder.finalize()
}
impl<'a, 'tcx> MoveDataBuilder<'a, 'tcx> {
fn gather_args(&mut self) {
for arg in self.body.args_iter() {
let path = self.data.rev_lookup.locals[arg];
let init = self.data.inits.push(Init {
path,
kind: InitKind::Deep,
location: InitLocation::Argument(arg),
});
debug!("gather_args: adding init {:?} of {:?} for argument {:?}", init, path, arg);
self.data.init_path_map[path].push(init);
}
}
fn gather_statement(&mut self, loc: Location, stmt: &Statement<'tcx>) {
debug!("gather_statement({:?}, {:?})", loc, stmt);
(Gatherer { builder: self, loc }).gather_statement(stmt);
}
fn gather_terminator(&mut self, loc: Location, term: &Terminator<'tcx>) {
debug!("gather_terminator({:?}, {:?})", loc, term);
(Gatherer { builder: self, loc }).gather_terminator(term);
}
}
struct Gatherer<'b, 'a, 'tcx> {
builder: &'b mut MoveDataBuilder<'a, 'tcx>,
loc: Location,
}
impl<'b, 'a, 'tcx> Gatherer<'b, 'a, 'tcx> {
fn gather_statement(&mut self, stmt: &Statement<'tcx>) {
match &stmt.kind {
StatementKind::Assign(box (place, rval)) => {
self.create_move_path(*place);
if let RvalueInitializationState::Shallow = rval.initialization_state() {
// Box starts out uninitialized - need to create a separate
// move-path for the interior so it will be separate from
// the exterior.
self.create_move_path(self.builder.tcx.mk_place_deref(*place));
self.gather_init(place.as_ref(), InitKind::Shallow);
} else {
self.gather_init(place.as_ref(), InitKind::Deep);
}
self.gather_rvalue(rval);
}
StatementKind::FakeRead(box (_, place)) => {
self.create_move_path(*place);
}
StatementKind::LlvmInlineAsm(ref asm) => {
for (output, kind) in iter::zip(&*asm.outputs, &asm.asm.outputs) {
if !kind.is_indirect {
self.gather_init(output.as_ref(), InitKind::Deep);
}
}
for (_, input) in asm.inputs.iter() {
self.gather_operand(input);
}
}
StatementKind::StorageLive(_) => {}
StatementKind::StorageDead(local) => {
self.gather_move(Place::from(*local));
}
StatementKind::SetDiscriminant { .. } => {
span_bug!(
stmt.source_info.span,
"SetDiscriminant should not exist during borrowck"
);
}
StatementKind::Retag { .. }
| StatementKind::AscribeUserType(..)
| StatementKind::Coverage(..)
| StatementKind::CopyNonOverlapping(..)
| StatementKind::Nop => {}
}
}
fn gather_rvalue(&mut self, rvalue: &Rvalue<'tcx>) {
match *rvalue {
Rvalue::ThreadLocalRef(_) => {} // not-a-move
Rvalue::Use(ref operand)
| Rvalue::Repeat(ref operand, _)
| Rvalue::Cast(_, ref operand, _)
| Rvalue::UnaryOp(_, ref operand) => self.gather_operand(operand),
Rvalue::BinaryOp(ref _binop, box (ref lhs, ref rhs))
| Rvalue::CheckedBinaryOp(ref _binop, box (ref lhs, ref rhs)) => {
self.gather_operand(lhs);
self.gather_operand(rhs);
}
Rvalue::Aggregate(ref _kind, ref operands) => {
for operand in operands {
self.gather_operand(operand);
}
}
Rvalue::Ref(..)
| Rvalue::AddressOf(..)
| Rvalue::Discriminant(..)
| Rvalue::Len(..)
| Rvalue::NullaryOp(NullOp::SizeOf, _)
| Rvalue::NullaryOp(NullOp::Box, _) => {
// This returns an rvalue with uninitialized contents. We can't
// move out of it here because it is an rvalue - assignments always
// completely initialize their place.
//
// However, this does not matter - MIR building is careful to
// only emit a shallow free for the partially-initialized
// temporary.
//
// In any case, if we want to fix this, we have to register a
// special move and change the `statement_effect` functions.
}
}
}
fn gather_terminator(&mut self, term: &Terminator<'tcx>) {
match term.kind {
TerminatorKind::Goto { target: _ }
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
// In some sense returning moves the return place into the current
// call's destination, however, since there are no statements after
// this that could possibly access the return place, this doesn't
// need recording.
| TerminatorKind::Return
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::GeneratorDrop
| TerminatorKind::Unreachable => {}
TerminatorKind::Assert { ref cond, .. } => {
self.gather_operand(cond);
}
TerminatorKind::SwitchInt { ref discr, .. } => {
self.gather_operand(discr);
}
TerminatorKind::Yield { ref value, resume_arg: place, .. } => {
self.gather_operand(value);
self.create_move_path(place);
self.gather_init(place.as_ref(), InitKind::Deep);
}
TerminatorKind::Drop { place, target: _, unwind: _ } => {
self.gather_move(place);
}
TerminatorKind::DropAndReplace { place, ref value, .. } => {
self.create_move_path(place);
self.gather_operand(value);
self.gather_init(place.as_ref(), InitKind::Deep);
}
TerminatorKind::Call {
ref func,
ref args,
ref destination,
cleanup: _,
from_hir_call: _,
fn_span: _,
} => {
self.gather_operand(func);
for arg in args {
self.gather_operand(arg);
}
if let Some((destination, _bb)) = *destination {
self.create_move_path(destination);
self.gather_init(destination.as_ref(), InitKind::NonPanicPathOnly);
}
}
TerminatorKind::InlineAsm {
template: _,
ref operands,
options: _,
line_spans: _,
destination: _,
} => {
for op in operands {
match *op {
InlineAsmOperand::In { reg: _, ref value }
=> {
self.gather_operand(value);
}
InlineAsmOperand::Out { reg: _, late: _, place, .. } => {
if let Some(place) = place {
self.create_move_path(place);
self.gather_init(place.as_ref(), InitKind::Deep);
}
}
InlineAsmOperand::InOut { reg: _, late: _, ref in_value, out_place } => {
self.gather_operand(in_value);
if let Some(out_place) = out_place {
self.create_move_path(out_place);
self.gather_init(out_place.as_ref(), InitKind::Deep);
}
}
InlineAsmOperand::Const { value: _ }
| InlineAsmOperand::SymFn { value: _ }
| InlineAsmOperand::SymStatic { def_id: _ } => {}
}
}
}
}
}
fn gather_operand(&mut self, operand: &Operand<'tcx>) {
match *operand {
Operand::Constant(..) | Operand::Copy(..) => {} // not-a-move
Operand::Move(place) => {
// a move
self.gather_move(place);
}
}
}
fn gather_move(&mut self, place: Place<'tcx>) {
debug!("gather_move({:?}, {:?})", self.loc, place);
if let [ref base @ .., ProjectionElem::Subslice { from, to, from_end: false }] =
**place.projection
{
// Split `Subslice` patterns into the corresponding list of
// `ConstIndex` patterns. This is done to ensure that all move paths
// are disjoint, which is expected by drop elaboration.
let base_place =
Place { local: place.local, projection: self.builder.tcx.intern_place_elems(base) };
let base_path = match self.move_path_for(base_place) {
Ok(path) => path,
Err(MoveError::UnionMove { path }) => {
self.record_move(place, path);
return;
}
Err(error @ MoveError::IllegalMove { .. }) => {
self.builder.errors.push((base_place, error));
return;
}
};
let base_ty = base_place.ty(self.builder.body, self.builder.tcx).ty;
let len: u64 = match base_ty.kind() {
ty::Array(_, size) => size.eval_usize(self.builder.tcx, self.builder.param_env),
_ => bug!("from_end: false slice pattern of non-array type"),
};
for offset in from..to {
let elem =
ProjectionElem::ConstantIndex { offset, min_length: len, from_end: false };
let path =
self.add_move_path(base_path, elem, |tcx| tcx.mk_place_elem(base_place, elem));
self.record_move(place, path);
}
} else {
match self.move_path_for(place) {
Ok(path) | Err(MoveError::UnionMove { path }) => self.record_move(place, path),
Err(error @ MoveError::IllegalMove { .. }) => {
self.builder.errors.push((place, error));
}
};
}
}
fn record_move(&mut self, place: Place<'tcx>, path: MovePathIndex) {
let move_out = self.builder.data.moves.push(MoveOut { path, source: self.loc });
debug!(
"gather_move({:?}, {:?}): adding move {:?} of {:?}",
self.loc, place, move_out, path
);
self.builder.data.path_map[path].push(move_out);
self.builder.data.loc_map[self.loc].push(move_out);
}
fn gather_init(&mut self, place: PlaceRef<'tcx>, kind: InitKind) {
debug!("gather_init({:?}, {:?})", self.loc, place);
let mut place = place;
// Check if we are assigning into a field of a union, if so, lookup the place
// of the union so it is marked as initialized again.
if let Some((place_base, ProjectionElem::Field(_, _))) = place.last_projection() {
if place_base.ty(self.builder.body, self.builder.tcx).ty.is_union() {
place = place_base;
}
}
if let LookupResult::Exact(path) = self.builder.data.rev_lookup.find(place) {
let init = self.builder.data.inits.push(Init {
location: InitLocation::Statement(self.loc),
path,
kind,
});
debug!(
"gather_init({:?}, {:?}): adding init {:?} of {:?}",
self.loc, place, init, path
);
self.builder.data.init_path_map[path].push(init);
self.builder.data.init_loc_map[self.loc].push(init);
}
}
}

View file

@ -0,0 +1,420 @@
use core::slice::Iter;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::{Enumerated, IndexVec};
use rustc_middle::mir::*;
use rustc_middle::ty::{ParamEnv, Ty, TyCtxt};
use rustc_span::Span;
use smallvec::SmallVec;
use std::fmt;
use std::ops::{Index, IndexMut};
use self::abs_domain::{AbstractElem, Lift};
mod abs_domain;
rustc_index::newtype_index! {
pub struct MovePathIndex {
DEBUG_FORMAT = "mp{}"
}
}
impl polonius_engine::Atom for MovePathIndex {
fn index(self) -> usize {
rustc_index::vec::Idx::index(self)
}
}
rustc_index::newtype_index! {
pub struct MoveOutIndex {
DEBUG_FORMAT = "mo{}"
}
}
rustc_index::newtype_index! {
pub struct InitIndex {
DEBUG_FORMAT = "in{}"
}
}
impl MoveOutIndex {
pub fn move_path_index(&self, move_data: &MoveData<'_>) -> MovePathIndex {
move_data.moves[*self].path
}
}
/// `MovePath` is a canonicalized representation of a path that is
/// moved or assigned to.
///
/// It follows a tree structure.
///
/// Given `struct X { m: M, n: N }` and `x: X`, moves like `drop x.m;`
/// move *out* of the place `x.m`.
///
/// The MovePaths representing `x.m` and `x.n` are siblings (that is,
/// one of them will link to the other via the `next_sibling` field,
/// and the other will have no entry in its `next_sibling` field), and
/// they both have the MovePath representing `x` as their parent.
#[derive(Clone)]
pub struct MovePath<'tcx> {
pub next_sibling: Option<MovePathIndex>,
pub first_child: Option<MovePathIndex>,
pub parent: Option<MovePathIndex>,
pub place: Place<'tcx>,
}
impl<'tcx> MovePath<'tcx> {
/// Returns an iterator over the parents of `self`.
pub fn parents<'a>(
&self,
move_paths: &'a IndexVec<MovePathIndex, MovePath<'tcx>>,
) -> impl 'a + Iterator<Item = (MovePathIndex, &'a MovePath<'tcx>)> {
let first = self.parent.map(|mpi| (mpi, &move_paths[mpi]));
MovePathLinearIter {
next: first,
fetch_next: move |_, parent: &MovePath<'_>| {
parent.parent.map(|mpi| (mpi, &move_paths[mpi]))
},
}
}
/// Returns an iterator over the immediate children of `self`.
pub fn children<'a>(
&self,
move_paths: &'a IndexVec<MovePathIndex, MovePath<'tcx>>,
) -> impl 'a + Iterator<Item = (MovePathIndex, &'a MovePath<'tcx>)> {
let first = self.first_child.map(|mpi| (mpi, &move_paths[mpi]));
MovePathLinearIter {
next: first,
fetch_next: move |_, child: &MovePath<'_>| {
child.next_sibling.map(|mpi| (mpi, &move_paths[mpi]))
},
}
}
/// Finds the closest descendant of `self` for which `f` returns `true` using a breadth-first
/// search.
///
/// `f` will **not** be called on `self`.
pub fn find_descendant(
&self,
move_paths: &IndexVec<MovePathIndex, MovePath<'_>>,
f: impl Fn(MovePathIndex) -> bool,
) -> Option<MovePathIndex> {
let mut todo = if let Some(child) = self.first_child {
vec![child]
} else {
return None;
};
while let Some(mpi) = todo.pop() {
if f(mpi) {
return Some(mpi);
}
let move_path = &move_paths[mpi];
if let Some(child) = move_path.first_child {
todo.push(child);
}
// After we've processed the original `mpi`, we should always
// traverse the siblings of any of its children.
if let Some(sibling) = move_path.next_sibling {
todo.push(sibling);
}
}
None
}
}
impl<'tcx> fmt::Debug for MovePath<'tcx> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(w, "MovePath {{")?;
if let Some(parent) = self.parent {
write!(w, " parent: {:?},", parent)?;
}
if let Some(first_child) = self.first_child {
write!(w, " first_child: {:?},", first_child)?;
}
if let Some(next_sibling) = self.next_sibling {
write!(w, " next_sibling: {:?}", next_sibling)?;
}
write!(w, " place: {:?} }}", self.place)
}
}
impl<'tcx> fmt::Display for MovePath<'tcx> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(w, "{:?}", self.place)
}
}
struct MovePathLinearIter<'a, 'tcx, F> {
next: Option<(MovePathIndex, &'a MovePath<'tcx>)>,
fetch_next: F,
}
impl<'a, 'tcx, F> Iterator for MovePathLinearIter<'a, 'tcx, F>
where
F: FnMut(MovePathIndex, &'a MovePath<'tcx>) -> Option<(MovePathIndex, &'a MovePath<'tcx>)>,
{
type Item = (MovePathIndex, &'a MovePath<'tcx>);
fn next(&mut self) -> Option<Self::Item> {
let ret = self.next.take()?;
self.next = (self.fetch_next)(ret.0, ret.1);
Some(ret)
}
}
#[derive(Debug)]
pub struct MoveData<'tcx> {
pub move_paths: IndexVec<MovePathIndex, MovePath<'tcx>>,
pub moves: IndexVec<MoveOutIndex, MoveOut>,
/// Each Location `l` is mapped to the MoveOut's that are effects
/// of executing the code at `l`. (There can be multiple MoveOut's
/// for a given `l` because each MoveOut is associated with one
/// particular path being moved.)
pub loc_map: LocationMap<SmallVec<[MoveOutIndex; 4]>>,
pub path_map: IndexVec<MovePathIndex, SmallVec<[MoveOutIndex; 4]>>,
pub rev_lookup: MovePathLookup,
pub inits: IndexVec<InitIndex, Init>,
/// Each Location `l` is mapped to the Inits that are effects
/// of executing the code at `l`.
pub init_loc_map: LocationMap<SmallVec<[InitIndex; 4]>>,
pub init_path_map: IndexVec<MovePathIndex, SmallVec<[InitIndex; 4]>>,
}
pub trait HasMoveData<'tcx> {
fn move_data(&self) -> &MoveData<'tcx>;
}
#[derive(Debug)]
pub struct LocationMap<T> {
/// Location-indexed (BasicBlock for outer index, index within BB
/// for inner index) map.
pub(crate) map: IndexVec<BasicBlock, Vec<T>>,
}
impl<T> Index<Location> for LocationMap<T> {
type Output = T;
fn index(&self, index: Location) -> &Self::Output {
&self.map[index.block][index.statement_index]
}
}
impl<T> IndexMut<Location> for LocationMap<T> {
fn index_mut(&mut self, index: Location) -> &mut Self::Output {
&mut self.map[index.block][index.statement_index]
}
}
impl<T> LocationMap<T>
where
T: Default + Clone,
{
fn new(body: &Body<'_>) -> Self {
LocationMap {
map: body
.basic_blocks()
.iter()
.map(|block| vec![T::default(); block.statements.len() + 1])
.collect(),
}
}
}
/// `MoveOut` represents a point in a program that moves out of some
/// L-value; i.e., "creates" uninitialized memory.
///
/// With respect to dataflow analysis:
/// - Generated by moves and declaration of uninitialized variables.
/// - Killed by assignments to the memory.
#[derive(Copy, Clone)]
pub struct MoveOut {
/// path being moved
pub path: MovePathIndex,
/// location of move
pub source: Location,
}
impl fmt::Debug for MoveOut {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}@{:?}", self.path, self.source)
}
}
/// `Init` represents a point in a program that initializes some L-value;
#[derive(Copy, Clone)]
pub struct Init {
/// path being initialized
pub path: MovePathIndex,
/// location of initialization
pub location: InitLocation,
/// Extra information about this initialization
pub kind: InitKind,
}
/// Initializations can be from an argument or from a statement. Arguments
/// do not have locations, in those cases the `Local` is kept..
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum InitLocation {
Argument(Local),
Statement(Location),
}
/// Additional information about the initialization.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum InitKind {
/// Deep init, even on panic
Deep,
/// Only does a shallow init
Shallow,
/// This doesn't initialize the variable on panic (and a panic is possible).
NonPanicPathOnly,
}
impl fmt::Debug for Init {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}@{:?} ({:?})", self.path, self.location, self.kind)
}
}
impl Init {
pub fn span<'tcx>(&self, body: &Body<'tcx>) -> Span {
match self.location {
InitLocation::Argument(local) => body.local_decls[local].source_info.span,
InitLocation::Statement(location) => body.source_info(location).span,
}
}
}
/// Tables mapping from a place to its MovePathIndex.
#[derive(Debug)]
pub struct MovePathLookup {
locals: IndexVec<Local, MovePathIndex>,
/// projections are made from a base-place and a projection
/// elem. The base-place will have a unique MovePathIndex; we use
/// the latter as the index into the outer vector (narrowing
/// subsequent search so that it is solely relative to that
/// base-place). For the remaining lookup, we map the projection
/// elem to the associated MovePathIndex.
projections: FxHashMap<(MovePathIndex, AbstractElem), MovePathIndex>,
}
mod builder;
#[derive(Copy, Clone, Debug)]
pub enum LookupResult {
Exact(MovePathIndex),
Parent(Option<MovePathIndex>),
}
impl MovePathLookup {
// Unlike the builder `fn move_path_for` below, this lookup
// alternative will *not* create a MovePath on the fly for an
// unknown place, but will rather return the nearest available
// parent.
pub fn find(&self, place: PlaceRef<'_>) -> LookupResult {
let mut result = self.locals[place.local];
for elem in place.projection.iter() {
if let Some(&subpath) = self.projections.get(&(result, elem.lift())) {
result = subpath;
} else {
return LookupResult::Parent(Some(result));
}
}
LookupResult::Exact(result)
}
pub fn find_local(&self, local: Local) -> MovePathIndex {
self.locals[local]
}
/// An enumerated iterator of `local`s and their associated
/// `MovePathIndex`es.
pub fn iter_locals_enumerated(&self) -> Enumerated<Local, Iter<'_, MovePathIndex>> {
self.locals.iter_enumerated()
}
}
#[derive(Debug)]
pub struct IllegalMoveOrigin<'tcx> {
pub location: Location,
pub kind: IllegalMoveOriginKind<'tcx>,
}
#[derive(Debug)]
pub enum IllegalMoveOriginKind<'tcx> {
/// Illegal move due to attempt to move from behind a reference.
BorrowedContent {
/// The place the reference refers to: if erroneous code was trying to
/// move from `(*x).f` this will be `*x`.
target_place: Place<'tcx>,
},
/// Illegal move due to attempt to move from field of an ADT that
/// implements `Drop`. Rust maintains invariant that all `Drop`
/// ADT's remain fully-initialized so that user-defined destructor
/// can safely read from all of the ADT's fields.
InteriorOfTypeWithDestructor { container_ty: Ty<'tcx> },
/// Illegal move due to attempt to move out of a slice or array.
InteriorOfSliceOrArray { ty: Ty<'tcx>, is_index: bool },
}
#[derive(Debug)]
pub enum MoveError<'tcx> {
IllegalMove { cannot_move_out_of: IllegalMoveOrigin<'tcx> },
UnionMove { path: MovePathIndex },
}
impl<'tcx> MoveError<'tcx> {
fn cannot_move_out_of(location: Location, kind: IllegalMoveOriginKind<'tcx>) -> Self {
let origin = IllegalMoveOrigin { location, kind };
MoveError::IllegalMove { cannot_move_out_of: origin }
}
}
impl<'tcx> MoveData<'tcx> {
pub fn gather_moves(
body: &Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
) -> Result<Self, (Self, Vec<(Place<'tcx>, MoveError<'tcx>)>)> {
builder::gather_moves(body, tcx, param_env)
}
/// For the move path `mpi`, returns the root local variable (if any) that starts the path.
/// (e.g., for a path like `a.b.c` returns `Some(a)`)
pub fn base_local(&self, mut mpi: MovePathIndex) -> Option<Local> {
loop {
let path = &self.move_paths[mpi];
if let Some(l) = path.place.as_local() {
return Some(l);
}
if let Some(parent) = path.parent {
mpi = parent;
continue;
} else {
return None;
}
}
}
pub fn find_in_move_path_or_its_descendants(
&self,
root: MovePathIndex,
pred: impl Fn(MovePathIndex) -> bool,
) -> Option<MovePathIndex> {
if pred(root) {
return Some(root);
}
self.move_paths[root].find_descendant(&self.move_paths, pred)
}
}