syntax: Return named errors from literal parsing functions

This commit is contained in:
Vadim Petrochenkov 2019-05-18 17:36:30 +03:00
parent 85334c5092
commit fcc2f92f45
6 changed files with 169 additions and 131 deletions

View file

@ -554,7 +554,7 @@ impl MetaItemKind {
Some(TokenTree::Token(_, token::Eq)) => {
tokens.next();
return if let Some(TokenTree::Token(span, token)) = tokens.next() {
Lit::from_token(&token, span, None).map(MetaItemKind::NameValue)
Lit::from_token(&token, span).ok().map(MetaItemKind::NameValue)
} else {
None
};
@ -599,7 +599,7 @@ impl NestedMetaItem {
where I: Iterator<Item = TokenTree>,
{
if let Some(TokenTree::Token(span, token)) = tokens.peek().cloned() {
if let Some(lit) = Lit::from_token(&token, span, None) {
if let Ok(lit) = Lit::from_token(&token, span) {
tokens.next();
return Some(NestedMetaItem::Literal(lit));
}

View file

@ -16,11 +16,64 @@ use syntax_pos::Span;
use std::ascii;
macro_rules! err {
($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
match $opt_diag {
Some(($span, $diag)) => { $($body)* }
None => return None,
crate enum LitError {
NotLiteral,
LexerError,
InvalidSuffix,
InvalidIntSuffix,
InvalidFloatSuffix,
NonDecimalFloat(&'static str),
IntTooLarge,
}
impl LitError {
crate fn report(&self, diag: &Handler, lit: token::Lit, suf: Option<Symbol>, span: Span) {
match *self {
LitError::NotLiteral | LitError::LexerError => {}
LitError::InvalidSuffix => {
expect_no_suffix(diag, span, &format!("{} {}", lit.article(), lit.descr()), suf);
}
LitError::InvalidIntSuffix => {
let suf = suf.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['i', 'u'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
.emit();
}
}
LitError::InvalidFloatSuffix => {
let suf = suf.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['f'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 32 and 64")
.emit();
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
}
LitError::NonDecimalFloat(descr) => {
diag.struct_span_err(span, &format!("{} float literal is not supported", descr))
.span_label(span, "not supported")
.emit();
}
LitError::IntTooLarge => {
diag.struct_span_err(span, "int literal is too large")
.emit();
}
}
}
}
@ -33,15 +86,12 @@ impl LitKind {
fn from_lit_token(
lit: token::Lit,
suf: Option<Symbol>,
diag: Option<(Span, &Handler)>
) -> Option<LitKind> {
) -> Result<LitKind, LitError> {
if suf.is_some() && !lit.may_have_suffix() {
err!(diag, |span, diag| {
expect_no_suffix(span, diag, &format!("a {}", lit.literal_name()), suf)
});
return Err(LitError::InvalidSuffix);
}
Some(match lit {
Ok(match lit {
token::Bool(i) => {
assert!(i == kw::True || i == kw::False);
LitKind::Bool(i == kw::True)
@ -55,33 +105,33 @@ impl LitKind {
token::Char(i) => {
match unescape_char(&i.as_str()) {
Ok(c) => LitKind::Char(c),
Err(_) => LitKind::Err(i),
Err(_) => return Err(LitError::LexerError),
}
},
token::Err(i) => LitKind::Err(i),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => return integer_lit(&s.as_str(), suf, diag),
token::Float(s) => return float_lit(&s.as_str(), suf, diag),
token::Integer(s) => return integer_lit(s, suf),
token::Float(s) => return float_lit(s, suf),
token::Str_(mut sym) => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the Token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the Token.
let mut has_error = false;
let mut error = None;
let s = &sym.as_str();
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
let mut buf = String::with_capacity(s.len());
unescape_str(s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
Err(_) => error = Some(LitError::LexerError),
}
});
if has_error {
return Some(LitKind::Err(sym));
if let Some(error) = error {
return Err(error);
}
sym = Symbol::intern(&buf)
}
@ -99,15 +149,15 @@ impl LitKind {
token::ByteStr(i) => {
let s = &i.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut has_error = false;
let mut error = None;
unescape_byte_str(s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => has_error = true,
Err(_) => error = Some(LitError::LexerError),
}
});
if has_error {
return Some(LitKind::Err(i));
if let Some(error) = error {
return Err(error);
}
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
@ -165,6 +215,15 @@ impl LitKind {
}
impl Lit {
fn from_lit_token(
token: token::Lit,
suffix: Option<Symbol>,
span: Span,
) -> Result<Lit, LitError> {
let node = LitKind::from_lit_token(token, suffix)?;
Ok(Lit { node, token, suffix, span })
}
/// Converts literal token with a suffix into an AST literal.
/// Works speculatively and may return `None` if diagnostic handler is not passed.
/// If diagnostic handler is passed, may return `Some`,
@ -172,9 +231,8 @@ impl Lit {
crate fn from_token(
token: &token::Token,
span: Span,
diag: Option<(Span, &Handler)>,
) -> Option<Lit> {
let (token, suffix) = match *token {
) -> Result<Lit, LitError> {
let (lit, suf) = match *token {
token::Ident(ident, false) if ident.name == kw::True || ident.name == kw::False =>
(token::Bool(ident.name), None),
token::Literal(token, suffix) =>
@ -182,16 +240,15 @@ impl Lit {
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.node {
return Some(lit.clone());
return Ok(lit.clone());
}
}
return None;
return Err(LitError::NotLiteral);
}
_ => return None,
_ => return Err(LitError::NotLiteral)
};
let node = LitKind::from_lit_token(token, suffix, diag)?;
Some(Lit { node, token, suffix, span })
Lit::from_lit_token(lit, suf, span)
}
/// Attempts to recover an AST literal from semantic literal.
@ -215,13 +272,10 @@ impl Lit {
impl<'a> Parser<'a> {
/// Matches `lit = true | false | token_lit`.
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
let diag = Some((self.span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&self.token, self.span, diag) {
self.bump();
return Ok(lit);
} else if self.token == token::Dot {
// Recover `.4` as `0.4`.
let recovered = self.look_ahead(1, |t| {
let mut recovered = None;
if self.token == token::Dot {
// Attempt to recover `.4` as `0.4`.
recovered = self.look_ahead(1, |t| {
if let token::Literal(token::Integer(val), suf) = *t {
let next_span = self.look_ahead_span(1);
if self.span.hi() == next_span.lo() {
@ -232,7 +286,7 @@ impl<'a> Parser<'a> {
}
None
});
if let Some((token, span)) = recovered {
if let Some((ref token, span)) = recovered {
self.diagnostic()
.struct_span_err(span, "float literals must have an integer part")
.span_suggestion(
@ -242,27 +296,37 @@ impl<'a> Parser<'a> {
Applicability::MachineApplicable,
)
.emit();
let diag = Some((span, &self.sess.span_diagnostic));
if let Some(lit) = Lit::from_token(&token, span, diag) {
self.bump();
}
}
let (token, span) = recovered.as_ref().map_or((&self.token, self.span),
|(token, span)| (token, *span));
match Lit::from_token(token, span) {
Ok(lit) => {
self.bump();
return Ok(lit);
}
Err(LitError::NotLiteral) => {
let msg = format!("unexpected token: {}", self.this_token_descr());
return Err(self.span_fatal(span, &msg));
}
Err(err) => {
let (lit, suf) = token.expect_lit();
self.bump();
err.report(&self.sess.span_diagnostic, lit, suf, span);
return Ok(Lit::from_lit_token(token::Err(lit.symbol()), suf, span).ok().unwrap());
}
}
}
}
Err(self.span_fatal(self.span, &format!("unexpected token: {}", self.this_token_descr())))
}
}
crate fn expect_no_suffix(sp: Span, diag: &Handler, kind: &str, suffix: Option<ast::Name>) {
crate fn expect_no_suffix(diag: &Handler, sp: Span, kind: &str, suffix: Option<ast::Name>) {
match suffix {
None => {/* everything ok */}
Some(suf) => {
let text = suf.as_str();
if text.is_empty() {
diag.span_bug(sp, "found empty literal suffix in Some")
}
let mut err = if kind == "a tuple index" &&
["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
{
@ -318,48 +382,33 @@ fn raw_str_lit(lit: &str) -> String {
res
}
// check if `s` looks like i32 or u1234 etc.
// Checks if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Some(LitKind::FloatUnsuffixed(data)),
None => return Ok(LitKind::FloatUnsuffixed(data)),
};
Some(match &*suffix.as_str() {
Ok(match &*suffix.as_str() {
"f32" => LitKind::Float(data, ast::FloatTy::F32),
"f64" => LitKind::Float(data, ast::FloatTy::F64),
suf => {
err!(diag, |span, diag| {
if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
// if it looks like a width, lets try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
});
LitKind::FloatUnsuffixed(data)
}
_ => return Err(LitError::InvalidFloatSuffix),
})
}
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
fn float_lit(s: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
// Strip underscores without allocating a new String unless necessary.
let s2;
let s = s.as_str();
let s = s.get();
let s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
@ -367,15 +416,17 @@ fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
s
};
filtered_float_lit(Symbol::intern(s), suffix, diag)
filtered_float_lit(Symbol::intern(s), suffix)
}
fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
-> Option<LitKind> {
fn integer_lit(s: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
// s can only be ascii, byte indexing is fine
// Strip underscores without allocating a new String unless necessary.
let s2;
let orig = s;
let s = s.as_str();
let s = s.get();
let mut s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
@ -386,7 +437,6 @@ fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
debug!("integer_lit: {}, {:?}", s, suffix);
let mut base = 10;
let orig = s;
let mut ty = ast::LitIntType::Unsuffixed;
if s.starts_with('0') && s.len() > 1 {
@ -402,19 +452,15 @@ fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
let err = match base {
16 => Some("hexadecimal float literal is not supported"),
8 => Some("octal float literal is not supported"),
2 => Some("binary float literal is not supported"),
16 => Some(LitError::NonDecimalFloat("hexadecimal")),
8 => Some(LitError::NonDecimalFloat("octal")),
2 => Some(LitError::NonDecimalFloat("binary")),
_ => None,
};
if let Some(err) = err {
err!(diag, |span, diag| {
diag.struct_span_err(span, err)
.span_label(span, "not supported")
.emit();
});
return Err(err);
}
return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
return filtered_float_lit(Symbol::intern(s), Some(suf))
}
}
@ -423,9 +469,6 @@ fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
}
if let Some(suf) = suffix {
if suf.as_str().is_empty() {
err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
}
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
@ -439,48 +482,22 @@ fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
suf => {
// i<digits> and u<digits> look like widths, so lets
// give an error message along those lines
err!(diag, |span, diag| {
if looks_like_width_suffix(&['i', 'u'], suf) {
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for numeric literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types \
(`u32`, `isize`, etc)")
.emit();
}
});
ty
}
_ => return Err(LitError::InvalidIntSuffix),
}
}
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
Some(match u128::from_str_radix(s, base) {
Ok(match u128::from_str_radix(s, base) {
Ok(r) => LitKind::Int(r, ty),
Err(_) => {
// small bases are lexed as if they were base 10, e.g, the string
// Small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these cases have errors in the lexer: we don't want to emit
// two errors, and we especially don't want to emit this error since
// it isn't necessarily true.
let already_errored = base < 10 &&
s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if !already_errored {
err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
}
LitKind::Int(0, ty)
// but these kinds of errors are already reported by the lexer.
let from_lexer =
base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
return Err(if from_lexer { LitError::LexerError } else { LitError::IntTooLarge });
}
})
}

View file

@ -1054,7 +1054,7 @@ impl<'a> Parser<'a> {
}
fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
literal::expect_no_suffix(sp, &self.sess.span_diagnostic, kind, suffix)
literal::expect_no_suffix(&self.sess.span_diagnostic, sp, kind, suffix)
}
/// Attempts to consume a `<`. If `<<` is seen, replaces it with a single

View file

@ -77,7 +77,21 @@ pub enum Lit {
static_assert_size!(Lit, 8);
impl Lit {
crate fn literal_name(&self) -> &'static str {
crate fn symbol(&self) -> Symbol {
match *self {
Bool(s) | Byte(s) | Char(s) | Integer(s) | Float(s) | Err(s) |
Str_(s) | StrRaw(s, _) | ByteStr(s) | ByteStrRaw(s, _) => s
}
}
crate fn article(&self) -> &'static str {
match *self {
Integer(_) | Err(_) => "an",
_ => "a",
}
}
crate fn descr(&self) -> &'static str {
match *self {
Bool(_) => panic!("literal token contains `Lit::Bool`"),
Byte(_) => "byte literal",
@ -92,7 +106,7 @@ impl Lit {
crate fn may_have_suffix(&self) -> bool {
match *self {
Integer(..) | Float(..) => true,
Integer(..) | Float(..) | Err(..) => true,
_ => false,
}
}
@ -318,6 +332,13 @@ impl Token {
}
}
crate fn expect_lit(&self) -> (Lit, Option<Symbol>) {
match *self {
Literal(lit, suf) => (lit, suf),
_=> panic!("`expect_lit` called on non-literal"),
}
}
/// Returns `true` if the token is any literal, a minus (which can prefix a literal,
/// for example a '-42', or one of the boolean idents).
crate fn can_begin_literal_or_bool(&self) -> bool {

View file

@ -4,6 +4,6 @@ fn main() {
0x567.89;
//~^ ERROR hexadecimal float literal is not supported
0xDEAD.BEEFp-2f;
//~^ ERROR invalid suffix `f` for float literal
//~^ ERROR invalid suffix `f` for integer literal
//~| ERROR `{integer}` is a primitive type and therefore doesn't have fields
}

View file

@ -4,13 +4,13 @@ error: hexadecimal float literal is not supported
LL | 0x567.89;
| ^^^^^^^^
error: invalid suffix `f` for float literal
error: invalid suffix `f` for integer literal
--> $DIR/no-hex-float-literal.rs:6:18
|
LL | 0xDEAD.BEEFp-2f;
| ^^ invalid suffix `f`
|
= help: valid suffixes are `f32` and `f64`
= help: the suffix must be one of the integral types (`u32`, `isize`, etc)
error[E0610]: `{integer}` is a primitive type and therefore doesn't have fields
--> $DIR/no-hex-float-literal.rs:2:11