rustdoc: use JS to inline target type impl docs into alias
This is an attempt to balance three problems, each of which would be violated by a simpler implementation: - A type alias should show all the `impl` blocks for the target type, and vice versa, if they're applicable. If nothing was done, and rustdoc continues to match them up in HIR, this would not work. - Copying the target type's docs into its aliases' HTML pages directly causes far too much redundant HTML text to be generated when a crate has large numbers of methods and large numbers of type aliases. - Using JavaScript exclusively for type alias impl docs would be a functional regression, and could make some docs very hard to find for non-JS readers. - Making sure that only applicable docs are show in the resulting page requires a type checkers. Do not reimplement the type checker in JavaScript. So, to make it work, rustdoc stashes these type-alias-inlined docs in a JSONP "database-lite". The file is generated in `write_shared.rs`, included in a `<script>` tag added in `print_item.rs`, and `main.js` takes care of patching the additional docs into the DOM. The format of `trait.impl` and `type.impl` JS files are superficially similar. Each line, except the JSONP wrapper itself, belongs to a crate, and they are otherwise separate (rustdoc should be idempotent). The "meat" of the file is HTML strings, so the frontend code is very simple. Links are relative to the doc root, though, so the frontend needs to fix that up, and inlined docs can reuse these files. However, there are a few differences, caused by the sophisticated features that type aliases have. Consider this crate graph: ```text --------------------------------- | crate A: struct Foo<T> | | type Bar = Foo<i32> | | impl X for Foo<i8> | | impl Y for Foo<i32> | --------------------------------- | ---------------------------------- | crate B: type Baz = A::Foo<i8> | | type Xyy = A::Foo<i8> | | impl Z for Xyy | ---------------------------------- ``` The type.impl/A/struct.Foo.js JS file has a structure kinda like this: ```js JSONP({ "A": [["impl Y for Foo<i32>", "Y", "A::Bar"]], "B": [["impl X for Foo<i8>", "X", "B::Baz", "B::Xyy"], ["impl Z for Xyy", "Z", "B::Baz"]], }); ``` When the type.impl file is loaded, only the current crate's docs are actually used. The main reason to bundle them together is that there's enough duplication in them for DEFLATE to remove the redundancy. The contents of a crate are a list of impl blocks, themselves represented as lists. The first item in the sublist is the HTML block, the second item is the name of the trait (which goes in the sidebar), and all others are the names of type aliases that successfully match. This way: - There's no need to generate these files for types that have no aliases in the current crate. If a dependent crate makes a type alias, it'll take care of generating its own docs. - There's no need to reimplement parts of the type checker in JavaScript. The Rust backend does the checking, and includes its results in the file. - Docs defined directly on the type alias are dropped directly in the HTML by `render_assoc_items`, and are accessible without JavaScript. The JSONP file will not list impl items that are known to be part of the main HTML file already. [JSONP]: https://en.wikipedia.org/wiki/JSONP
This commit is contained in:
parent
4dfd827133
commit
fa10e4d667
23 changed files with 823 additions and 48 deletions
|
@ -5,18 +5,28 @@ use std::io::{self, BufReader};
|
|||
use std::path::{Component, Path};
|
||||
use std::rc::{Rc, Weak};
|
||||
|
||||
use indexmap::IndexMap;
|
||||
use itertools::Itertools;
|
||||
use rustc_data_structures::flock;
|
||||
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
||||
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
|
||||
use rustc_span::def_id::DefId;
|
||||
use rustc_span::Symbol;
|
||||
use serde::ser::SerializeSeq;
|
||||
use serde::{Serialize, Serializer};
|
||||
|
||||
use super::{collect_paths_for_type, ensure_trailing_slash, Context};
|
||||
use crate::clean::Crate;
|
||||
use crate::clean::{Crate, Item, ItemId, ItemKind};
|
||||
use crate::config::{EmitType, RenderOptions};
|
||||
use crate::docfs::PathError;
|
||||
use crate::error::Error;
|
||||
use crate::formats::cache::Cache;
|
||||
use crate::formats::item_type::ItemType;
|
||||
use crate::formats::{Impl, RenderMode};
|
||||
use crate::html::format::Buffer;
|
||||
use crate::html::render::{AssocItemLink, ImplRenderingParameters};
|
||||
use crate::html::{layout, static_files};
|
||||
use crate::visit::DocVisitor;
|
||||
use crate::{try_err, try_none};
|
||||
|
||||
/// Rustdoc writes out two kinds of shared files:
|
||||
|
@ -361,9 +371,247 @@ if (typeof exports !== 'undefined') {exports.searchIndex = searchIndex};
|
|||
}
|
||||
}
|
||||
|
||||
let cloned_shared = Rc::clone(&cx.shared);
|
||||
let cache = &cloned_shared.cache;
|
||||
|
||||
// Collect the list of aliased types and their aliases.
|
||||
// <https://github.com/search?q=repo%3Arust-lang%2Frust+[RUSTDOCIMPL]+type.impl&type=code>
|
||||
//
|
||||
// The clean AST has type aliases that point at their types, but
|
||||
// this visitor works to reverse that: `aliased_types` is a map
|
||||
// from target to the aliases that reference it, and each one
|
||||
// will generate one file.
|
||||
struct TypeImplCollector<'cx, 'cache> {
|
||||
// Map from DefId-of-aliased-type to its data.
|
||||
aliased_types: IndexMap<DefId, AliasedType<'cache>>,
|
||||
visited_aliases: FxHashSet<DefId>,
|
||||
cache: &'cache Cache,
|
||||
cx: &'cache mut Context<'cx>,
|
||||
}
|
||||
// Data for an aliased type.
|
||||
//
|
||||
// In the final file, the format will be roughly:
|
||||
//
|
||||
// ```json
|
||||
// // type.impl/CRATE/TYPENAME.js
|
||||
// JSONP(
|
||||
// "CRATE": [
|
||||
// ["IMPL1 HTML", "ALIAS1", "ALIAS2", ...],
|
||||
// ["IMPL2 HTML", "ALIAS3", "ALIAS4", ...],
|
||||
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ struct AliasedType
|
||||
// ...
|
||||
// ]
|
||||
// )
|
||||
// ```
|
||||
struct AliasedType<'cache> {
|
||||
// This is used to generate the actual filename of this aliased type.
|
||||
target_fqp: &'cache [Symbol],
|
||||
target_type: ItemType,
|
||||
// This is the data stored inside the file.
|
||||
// ItemId is used to deduplicate impls.
|
||||
impl_: IndexMap<ItemId, AliasedTypeImpl<'cache>>,
|
||||
}
|
||||
// The `impl_` contains data that's used to figure out if an alias will work,
|
||||
// and to generate the HTML at the end.
|
||||
//
|
||||
// The `type_aliases` list is built up with each type alias that matches.
|
||||
struct AliasedTypeImpl<'cache> {
|
||||
impl_: &'cache Impl,
|
||||
type_aliases: Vec<(&'cache [Symbol], Item)>,
|
||||
}
|
||||
impl<'cx, 'cache> DocVisitor for TypeImplCollector<'cx, 'cache> {
|
||||
fn visit_item(&mut self, it: &Item) {
|
||||
self.visit_item_recur(it);
|
||||
let cache = self.cache;
|
||||
let ItemKind::TypeAliasItem(ref t) = *it.kind else { return };
|
||||
let Some(self_did) = it.item_id.as_def_id() else { return };
|
||||
if !self.visited_aliases.insert(self_did) {
|
||||
return;
|
||||
}
|
||||
let Some(target_did) = t.type_.def_id(cache) else { return };
|
||||
let get_extern = { || cache.external_paths.get(&target_did) };
|
||||
let Some(&(ref target_fqp, target_type)) =
|
||||
cache.paths.get(&target_did).or_else(get_extern)
|
||||
else {
|
||||
return;
|
||||
};
|
||||
let aliased_type = self.aliased_types.entry(target_did).or_insert_with(|| {
|
||||
let impl_ = cache
|
||||
.impls
|
||||
.get(&target_did)
|
||||
.map(|v| &v[..])
|
||||
.unwrap_or_default()
|
||||
.iter()
|
||||
.map(|impl_| {
|
||||
(
|
||||
impl_.impl_item.item_id,
|
||||
AliasedTypeImpl { impl_, type_aliases: Vec::new() },
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
AliasedType { target_fqp: &target_fqp[..], target_type, impl_ }
|
||||
});
|
||||
let get_local = { || cache.paths.get(&self_did).map(|(p, _)| p) };
|
||||
let Some(self_fqp) = cache.exact_paths.get(&self_did).or_else(get_local) else {
|
||||
return;
|
||||
};
|
||||
let aliased_ty = self.cx.tcx().type_of(self_did).skip_binder();
|
||||
// Exclude impls that are directly on this type. They're already in the HTML.
|
||||
// Some inlining scenarios can cause there to be two versions of the same
|
||||
// impl: one on the type alias and one on the underlying target type.
|
||||
let mut seen_impls: FxHashSet<ItemId> = cache
|
||||
.impls
|
||||
.get(&self_did)
|
||||
.map(|s| &s[..])
|
||||
.unwrap_or_default()
|
||||
.iter()
|
||||
.map(|i| i.impl_item.item_id)
|
||||
.collect();
|
||||
for (impl_item_id, aliased_type_impl) in &mut aliased_type.impl_ {
|
||||
// Only include this impl if it actually unifies with this alias.
|
||||
// Synthetic impls are not included; those are also included in the HTML.
|
||||
//
|
||||
// FIXME(lazy_type_alias): Once the feature is complete or stable, rewrite this
|
||||
// to use type unification.
|
||||
// Be aware of `tests/rustdoc/type-alias/deeply-nested-112515.rs` which might regress.
|
||||
let Some(impl_did) = impl_item_id.as_def_id() else { continue };
|
||||
let for_ty = self.cx.tcx().type_of(impl_did).skip_binder();
|
||||
let reject_cx =
|
||||
DeepRejectCtxt { treat_obligation_params: TreatParams::AsCandidateKey };
|
||||
if !reject_cx.types_may_unify(aliased_ty, for_ty) {
|
||||
continue;
|
||||
}
|
||||
// Avoid duplicates
|
||||
if !seen_impls.insert(*impl_item_id) {
|
||||
continue;
|
||||
}
|
||||
// This impl was not found in the set of rejected impls
|
||||
aliased_type_impl.type_aliases.push((&self_fqp[..], it.clone()));
|
||||
}
|
||||
}
|
||||
}
|
||||
let mut type_impl_collector = TypeImplCollector {
|
||||
aliased_types: IndexMap::default(),
|
||||
visited_aliases: FxHashSet::default(),
|
||||
cache,
|
||||
cx,
|
||||
};
|
||||
DocVisitor::visit_crate(&mut type_impl_collector, &krate);
|
||||
// Final serialized form of the alias impl
|
||||
struct AliasSerializableImpl {
|
||||
text: String,
|
||||
trait_: Option<String>,
|
||||
aliases: Vec<String>,
|
||||
}
|
||||
impl Serialize for AliasSerializableImpl {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let mut seq = serializer.serialize_seq(None)?;
|
||||
seq.serialize_element(&self.text)?;
|
||||
if let Some(trait_) = &self.trait_ {
|
||||
seq.serialize_element(trait_)?;
|
||||
} else {
|
||||
seq.serialize_element(&0)?;
|
||||
}
|
||||
for type_ in &self.aliases {
|
||||
seq.serialize_element(type_)?;
|
||||
}
|
||||
seq.end()
|
||||
}
|
||||
}
|
||||
let cx = type_impl_collector.cx;
|
||||
let dst = cx.dst.join("type.impl");
|
||||
let aliased_types = type_impl_collector.aliased_types;
|
||||
for aliased_type in aliased_types.values() {
|
||||
let impls = aliased_type
|
||||
.impl_
|
||||
.values()
|
||||
.flat_map(|AliasedTypeImpl { impl_, type_aliases }| {
|
||||
let mut ret = Vec::new();
|
||||
let trait_ = impl_.inner_impl().trait_.as_ref().map(|path| path.last().to_string());
|
||||
// render_impl will filter out "impossible-to-call" methods
|
||||
// to make that functionality work here, it needs to be called with
|
||||
// each type alias, and if it gives a different result, split the impl
|
||||
for &(type_alias_fqp, ref type_alias_item) in type_aliases {
|
||||
let mut buf = Buffer::html();
|
||||
cx.id_map = Default::default();
|
||||
cx.deref_id_map = Default::default();
|
||||
super::render_impl(
|
||||
&mut buf,
|
||||
cx,
|
||||
*impl_,
|
||||
&type_alias_item,
|
||||
AssocItemLink::Anchor(None),
|
||||
RenderMode::Normal,
|
||||
None,
|
||||
&[],
|
||||
ImplRenderingParameters {
|
||||
show_def_docs: true,
|
||||
show_default_items: true,
|
||||
show_non_assoc_items: true,
|
||||
toggle_open_by_default: true,
|
||||
},
|
||||
);
|
||||
let text = buf.into_inner();
|
||||
let type_alias_fqp = (*type_alias_fqp).iter().join("::");
|
||||
if Some(&text) == ret.last().map(|s: &AliasSerializableImpl| &s.text) {
|
||||
ret.last_mut()
|
||||
.expect("already established that ret.last() is Some()")
|
||||
.aliases
|
||||
.push(type_alias_fqp);
|
||||
} else {
|
||||
ret.push(AliasSerializableImpl {
|
||||
text,
|
||||
trait_: trait_.clone(),
|
||||
aliases: vec![type_alias_fqp],
|
||||
})
|
||||
}
|
||||
}
|
||||
ret
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
let impls = format!(
|
||||
r#""{}":{}"#,
|
||||
krate.name(cx.tcx()),
|
||||
serde_json::to_string(&impls).expect("failed serde conversion"),
|
||||
);
|
||||
|
||||
let mut mydst = dst.clone();
|
||||
for part in &aliased_type.target_fqp[..aliased_type.target_fqp.len() - 1] {
|
||||
mydst.push(part.to_string());
|
||||
}
|
||||
cx.shared.ensure_dir(&mydst)?;
|
||||
let aliased_item_type = aliased_type.target_type;
|
||||
mydst.push(&format!(
|
||||
"{aliased_item_type}.{}.js",
|
||||
aliased_type.target_fqp[aliased_type.target_fqp.len() - 1]
|
||||
));
|
||||
|
||||
let (mut all_impls, _) = try_err!(collect(&mydst, krate.name(cx.tcx()).as_str()), &mydst);
|
||||
all_impls.push(impls);
|
||||
// Sort the implementors by crate so the file will be generated
|
||||
// identically even with rustdoc running in parallel.
|
||||
all_impls.sort();
|
||||
|
||||
let mut v = String::from("(function() {var type_impls = {\n");
|
||||
v.push_str(&all_impls.join(",\n"));
|
||||
v.push_str("\n};");
|
||||
v.push_str(
|
||||
"if (window.register_type_impls) {\
|
||||
window.register_type_impls(type_impls);\
|
||||
} else {\
|
||||
window.pending_type_impls = type_impls;\
|
||||
}",
|
||||
);
|
||||
v.push_str("})()");
|
||||
cx.shared.fs.write(mydst, v)?;
|
||||
}
|
||||
|
||||
// Update the list of all implementors for traits
|
||||
// <https://github.com/search?q=repo%3Arust-lang%2Frust+[RUSTDOCIMPL]+trait.impl&type=code>
|
||||
let dst = cx.dst.join("trait.impl");
|
||||
let cache = cx.cache();
|
||||
for (&did, imps) in &cache.implementors {
|
||||
// Private modules can leak through to this phase of rustdoc, which
|
||||
// could contain implementations for otherwise private types. In some
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue