1
Fork 0

Auto merge of #67397 - michaelwoerister:query-keys-in-self-profiling, r=wesleywiser

self-profiling: Support recording query keys

This PR makes self-profiling able to record query keys. The implementation is not as efficient as it could be yet (all query keys except for `DefId`s cause string data to be duplicated) and the rendered strings could be nicer too. But the implementation is functional and introduces the basic framework for emitting per-query-invocation event data.

I tried to add proper documentation on how everything works. Let me know if more documentation is needed.

r? @wesleywiser

@Mark-Simulacrum, heads up: This updates `measureme` to 0.7.0 which means that `summarize` on perf.rlo needs to be update accordingly once this is merged.
This commit is contained in:
bors 2020-01-10 12:18:46 +00:00
commit f795e8a216
11 changed files with 551 additions and 126 deletions

View file

@ -1995,9 +1995,9 @@ dependencies = [
[[package]]
name = "measureme"
version = "0.5.0"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c420bbc064623934620b5ab2dc0cf96451b34163329e82f95e7fa1b7b99a6ac8"
checksum = "fef709d3257013bba7cff14fc504e07e80631d3fe0f6d38ce63b8f6510ccb932"
dependencies = [
"byteorder",
"memmap",
@ -3079,6 +3079,7 @@ dependencies = [
"graphviz",
"jobserver",
"log",
"measureme",
"parking_lot",
"polonius-engine",
"rustc-rayon",

View file

@ -36,5 +36,6 @@ parking_lot = "0.9"
byteorder = { version = "1.3" }
chalk-engine = { version = "0.9.0", default-features=false }
smallvec = { version = "1.0", features = ["union", "may_dangle"] }
measureme = "0.7.1"
rustc_error_codes = { path = "../librustc_error_codes" }
rustc_session = { path = "../librustc_session" }

View file

@ -2,6 +2,7 @@ use crate::ty::{self, TyCtxt};
use errors::Diagnostic;
use parking_lot::{Condvar, Mutex};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::QueryInvocationId;
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering};
@ -11,7 +12,7 @@ use std::collections::hash_map::Entry;
use std::env;
use std::hash::Hash;
use std::mem;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::atomic::Ordering::Relaxed;
use crate::ich::{Fingerprint, StableHashingContext, StableHashingContextProvider};
@ -25,6 +26,12 @@ use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
#[derive(Clone)]
pub struct DepGraph {
data: Option<Lrc<DepGraphData>>,
/// This field is used for assigning DepNodeIndices when running in
/// non-incremental mode. Even in non-incremental mode we make sure that
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
/// ID is used for self-profiling.
virtual_dep_node_index: Lrc<AtomicU32>,
}
rustc_index::newtype_index! {
@ -35,6 +42,13 @@ impl DepNodeIndex {
pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
}
impl std::convert::From<DepNodeIndex> for QueryInvocationId {
#[inline]
fn from(dep_node_index: DepNodeIndex) -> Self {
QueryInvocationId(dep_node_index.as_u32())
}
}
#[derive(PartialEq)]
pub enum DepNodeColor {
Red,
@ -105,11 +119,12 @@ impl DepGraph {
previous: prev_graph,
colors: DepNodeColorMap::new(prev_graph_node_count),
})),
virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
}
}
pub fn new_disabled() -> DepGraph {
DepGraph { data: None }
DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
}
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
@ -322,7 +337,7 @@ impl DepGraph {
(result, dep_node_index)
} else {
(task(cx, arg), DepNodeIndex::INVALID)
(task(cx, arg), self.next_virtual_depnode_index())
}
}
@ -352,7 +367,7 @@ impl DepGraph {
let dep_node_index = data.current.complete_anon_task(dep_kind, task_deps);
(result, dep_node_index)
} else {
(op(), DepNodeIndex::INVALID)
(op(), self.next_virtual_depnode_index())
}
}
@ -478,8 +493,8 @@ impl DepGraph {
let current_dep_graph = &self.data.as_ref().unwrap().current;
Some((
current_dep_graph.total_read_count.load(SeqCst),
current_dep_graph.total_duplicate_read_count.load(SeqCst),
current_dep_graph.total_read_count.load(Relaxed),
current_dep_graph.total_duplicate_read_count.load(Relaxed),
))
} else {
None
@ -877,6 +892,11 @@ impl DepGraph {
}
}
}
fn next_virtual_depnode_index(&self) -> DepNodeIndex {
let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
DepNodeIndex::from_u32(index)
}
}
/// A "work product" is an intermediate result that we save into the
@ -1087,7 +1107,7 @@ impl DepGraphData {
if let Some(task_deps) = icx.task_deps {
let mut task_deps = task_deps.lock();
if cfg!(debug_assertions) {
self.current.total_read_count.fetch_add(1, SeqCst);
self.current.total_read_count.fetch_add(1, Relaxed);
}
if task_deps.read_set.insert(source) {
task_deps.reads.push(source);
@ -1105,7 +1125,7 @@ impl DepGraphData {
}
}
} else if cfg!(debug_assertions) {
self.current.total_duplicate_read_count.fetch_add(1, SeqCst);
self.current.total_duplicate_read_count.fetch_add(1, Relaxed);
}
}
})

View file

@ -2,8 +2,7 @@ use crate::dep_graph::SerializedDepNodeIndex;
use crate::dep_graph::{DepKind, DepNode};
use crate::ty::query::plumbing::CycleError;
use crate::ty::query::queries;
use crate::ty::query::QueryCache;
use crate::ty::query::{Query, QueryName};
use crate::ty::query::{Query, QueryCache};
use crate::ty::TyCtxt;
use rustc_data_structures::profiling::ProfileCategory;
use rustc_hir::def_id::{CrateNum, DefId};
@ -20,7 +19,7 @@ use std::hash::Hash;
// FIXME(eddyb) false positive, the lifetime parameter is used for `Key`/`Value`.
#[allow(unused_lifetimes)]
pub trait QueryConfig<'tcx> {
const NAME: QueryName;
const NAME: &'static str;
const CATEGORY: ProfileCategory;
type Key: Eq + Hash + Clone + Debug;

View file

@ -81,6 +81,9 @@ pub(crate) use self::config::QueryDescription;
mod on_disk_cache;
pub use self::on_disk_cache::OnDiskCache;
mod profiling_support;
pub use self::profiling_support::{IntoSelfProfilingString, QueryKeyStringBuilder};
// Each of these queries corresponds to a function pointer field in the
// `Providers` struct for requesting a value of that type, and a method
// on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way

View file

@ -13,6 +13,8 @@ use errors::{struct_span_err, Diagnostic, DiagnosticBuilder, FatalError, Handler
#[cfg(not(parallel_compiler))]
use rustc_data_structures::cold_path;
use rustc_data_structures::fx::{FxHashMap, FxHasher};
#[cfg(parallel_compiler)]
use rustc_data_structures::profiling::TimingGuard;
use rustc_data_structures::sharded::Sharded;
use rustc_data_structures::sync::{Lock, Lrc};
use rustc_data_structures::thin_vec::ThinVec;
@ -82,6 +84,19 @@ impl<'a, 'tcx, Q: QueryDescription<'tcx>> JobOwner<'a, 'tcx, Q> {
/// for some compile-time benchmarks.
#[inline(always)]
pub(super) fn try_get(tcx: TyCtxt<'tcx>, span: Span, key: &Q::Key) -> TryGetJob<'a, 'tcx, Q> {
// Handling the `query_blocked_prof_timer` is a bit weird because of the
// control flow in this function: Blocking is implemented by
// awaiting a running job and, once that is done, entering the loop below
// again from the top. In that second iteration we will hit the
// cache which provides us with the information we need for
// finishing the "query-blocked" event.
//
// We thus allocate `query_blocked_prof_timer` outside the loop,
// initialize it during the first iteration and finish it during the
// second iteration.
#[cfg(parallel_compiler)]
let mut query_blocked_prof_timer: Option<TimingGuard<'_>> = None;
let cache = Q::query_cache(tcx);
loop {
// We compute the key's hash once and then use it for both the
@ -95,7 +110,17 @@ impl<'a, 'tcx, Q: QueryDescription<'tcx>> JobOwner<'a, 'tcx, Q> {
if let Some((_, value)) =
lock.results.raw_entry().from_key_hashed_nocheck(key_hash, key)
{
tcx.prof.query_cache_hit(Q::NAME);
if unlikely!(tcx.prof.enabled()) {
tcx.prof.query_cache_hit(value.index.into());
#[cfg(parallel_compiler)]
{
if let Some(prof_timer) = query_blocked_prof_timer.take() {
prof_timer.finish_with_query_invocation_id(value.index.into());
}
}
}
let result = (value.value.clone(), value.index);
#[cfg(debug_assertions)]
{
@ -104,9 +129,6 @@ impl<'a, 'tcx, Q: QueryDescription<'tcx>> JobOwner<'a, 'tcx, Q> {
return TryGetJob::JobCompleted(result);
}
#[cfg(parallel_compiler)]
let query_blocked_prof_timer;
let job = match lock.active.entry((*key).clone()) {
Entry::Occupied(entry) => {
match *entry.get() {
@ -116,7 +138,7 @@ impl<'a, 'tcx, Q: QueryDescription<'tcx>> JobOwner<'a, 'tcx, Q> {
// self-profiler.
#[cfg(parallel_compiler)]
{
query_blocked_prof_timer = tcx.prof.query_blocked(Q::NAME);
query_blocked_prof_timer = Some(tcx.prof.query_blocked());
}
job.clone()
@ -153,11 +175,6 @@ impl<'a, 'tcx, Q: QueryDescription<'tcx>> JobOwner<'a, 'tcx, Q> {
{
let result = job.r#await(tcx, span);
// This `drop()` is not strictly necessary as the binding
// would go out of scope anyway. But it's good to have an
// explicit marker of how far the measurement goes.
drop(query_blocked_prof_timer);
if let Err(cycle) = result {
return TryGetJob::Cycle(Q::handle_cycle_error(tcx, cycle));
}
@ -347,7 +364,7 @@ impl<'tcx> TyCtxt<'tcx> {
#[inline(never)]
pub(super) fn get_query<Q: QueryDescription<'tcx>>(self, span: Span, key: Q::Key) -> Q::Value {
debug!("ty::query::get_query<{}>(key={:?}, span={:?})", Q::NAME.as_str(), key, span);
debug!("ty::query::get_query<{}>(key={:?}, span={:?})", Q::NAME, key, span);
let job = match JobOwner::try_get(self, span, &key) {
TryGetJob::NotYetStarted(job) => job,
@ -366,7 +383,7 @@ impl<'tcx> TyCtxt<'tcx> {
}
if Q::ANON {
let prof_timer = self.prof.query_provider(Q::NAME);
let prof_timer = self.prof.query_provider();
let ((result, dep_node_index), diagnostics) = with_diagnostics(|diagnostics| {
self.start_query(job.job.clone(), diagnostics, |tcx| {
@ -374,7 +391,7 @@ impl<'tcx> TyCtxt<'tcx> {
})
});
drop(prof_timer);
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
self.dep_graph.read_index(dep_node_index);
@ -436,8 +453,9 @@ impl<'tcx> TyCtxt<'tcx> {
let result = if Q::cache_on_disk(self, key.clone(), None)
&& self.sess.opts.debugging_opts.incremental_queries
{
let _prof_timer = self.prof.incr_cache_loading(Q::NAME);
let prof_timer = self.prof.incr_cache_loading();
let result = Q::try_load_from_disk(self, prev_dep_node_index);
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
// We always expect to find a cached result for things that
// can be forced from `DepNode`.
@ -457,11 +475,13 @@ impl<'tcx> TyCtxt<'tcx> {
} else {
// We could not load a result from the on-disk cache, so
// recompute.
let _prof_timer = self.prof.query_provider(Q::NAME);
let prof_timer = self.prof.query_provider();
// The dep-graph for this computation is already in-place.
let result = self.dep_graph.with_ignore(|| Q::compute(self, key));
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
result
};
@ -523,7 +543,7 @@ impl<'tcx> TyCtxt<'tcx> {
dep_node
);
let prof_timer = self.prof.query_provider(Q::NAME);
let prof_timer = self.prof.query_provider();
let ((result, dep_node_index), diagnostics) = with_diagnostics(|diagnostics| {
self.start_query(job.job.clone(), diagnostics, |tcx| {
@ -541,7 +561,7 @@ impl<'tcx> TyCtxt<'tcx> {
})
});
drop(prof_timer);
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
if unlikely!(!diagnostics.is_empty()) {
if dep_node.kind != crate::dep_graph::DepKind::Null {
@ -572,17 +592,19 @@ impl<'tcx> TyCtxt<'tcx> {
let dep_node = Q::to_dep_node(self, &key);
if self.dep_graph.try_mark_green_and_read(self, &dep_node).is_none() {
// A None return from `try_mark_green_and_read` means that this is either
// a new dep node or that the dep node has already been marked red.
// Either way, we can't call `dep_graph.read()` as we don't have the
// DepNodeIndex. We must invoke the query itself. The performance cost
// this introduces should be negligible as we'll immediately hit the
// in-memory cache, or another query down the line will.
let _ = self.get_query::<Q>(DUMMY_SP, key);
} else {
self.prof.query_cache_hit(Q::NAME);
match self.dep_graph.try_mark_green_and_read(self, &dep_node) {
None => {
// A None return from `try_mark_green_and_read` means that this is either
// a new dep node or that the dep node has already been marked red.
// Either way, we can't call `dep_graph.read()` as we don't have the
// DepNodeIndex. We must invoke the query itself. The performance cost
// this introduces should be negligible as we'll immediately hit the
// in-memory cache, or another query down the line will.
let _ = self.get_query::<Q>(DUMMY_SP, key);
}
Some((_, dep_node_index)) => {
self.prof.query_cache_hit(dep_node_index.into());
}
}
}
@ -813,36 +835,6 @@ macro_rules! define_queries_inner {
}
}
#[allow(nonstandard_style)]
#[derive(Clone, Copy)]
pub enum QueryName {
$($name),*
}
impl rustc_data_structures::profiling::QueryName for QueryName {
fn discriminant(self) -> std::mem::Discriminant<QueryName> {
std::mem::discriminant(&self)
}
fn as_str(self) -> &'static str {
QueryName::as_str(&self)
}
}
impl QueryName {
pub fn register_with_profiler(
profiler: &rustc_data_structures::profiling::SelfProfiler,
) {
$(profiler.register_query_name(QueryName::$name);)*
}
pub fn as_str(&self) -> &'static str {
match self {
$(QueryName::$name => stringify!($name),)*
}
}
}
#[allow(nonstandard_style)]
#[derive(Clone, Debug)]
pub enum Query<$tcx> {
@ -883,12 +875,6 @@ macro_rules! define_queries_inner {
$(Query::$name(key) => key.default_span(tcx),)*
}
}
pub fn query_name(&self) -> QueryName {
match self {
$(Query::$name(_) => QueryName::$name,)*
}
}
}
impl<'a, $tcx> HashStable<StableHashingContext<'a>> for Query<$tcx> {
@ -923,7 +909,7 @@ macro_rules! define_queries_inner {
type Key = $K;
type Value = $V;
const NAME: QueryName = QueryName::$name;
const NAME: &'static str = stringify!($name);
const CATEGORY: ProfileCategory = $category;
}
@ -1035,6 +1021,35 @@ macro_rules! define_queries_inner {
pub fn $name(self, key: $K) -> $V {
self.at(DUMMY_SP).$name(key)
})*
/// All self-profiling events generated by the query engine use
/// virtual `StringId`s for their `event_id`. This method makes all
/// those virtual `StringId`s point to actual strings.
///
/// If we are recording only summary data, the ids will point to
/// just the query names. If we are recording query keys too, we
/// allocate the corresponding strings here.
pub fn alloc_self_profile_query_strings(self) {
use crate::ty::query::profiling_support::{
alloc_self_profile_query_strings_for_query_cache,
QueryKeyStringCache,
};
if !self.prof.enabled() {
return;
}
let mut string_cache = QueryKeyStringCache::new();
$({
alloc_self_profile_query_strings_for_query_cache(
self,
stringify!($name),
&self.queries.$name,
&mut string_cache,
);
})*
}
}
impl TyCtxtAt<$tcx> {

View file

@ -0,0 +1,235 @@
use crate::hir::map::definitions::DefPathData;
use crate::ty::context::TyCtxt;
use crate::ty::query::config::QueryConfig;
use crate::ty::query::plumbing::QueryCache;
use measureme::{StringComponent, StringId};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::profiling::SelfProfiler;
use rustc_data_structures::sharded::Sharded;
use rustc_hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use std::fmt::Debug;
use std::io::Write;
pub struct QueryKeyStringCache {
def_id_cache: FxHashMap<DefId, StringId>,
}
impl QueryKeyStringCache {
pub fn new() -> QueryKeyStringCache {
QueryKeyStringCache { def_id_cache: Default::default() }
}
}
pub struct QueryKeyStringBuilder<'p, 'c, 'tcx> {
profiler: &'p SelfProfiler,
tcx: TyCtxt<'tcx>,
string_cache: &'c mut QueryKeyStringCache,
}
impl<'p, 'c, 'tcx> QueryKeyStringBuilder<'p, 'c, 'tcx> {
pub fn new(
profiler: &'p SelfProfiler,
tcx: TyCtxt<'tcx>,
string_cache: &'c mut QueryKeyStringCache,
) -> QueryKeyStringBuilder<'p, 'c, 'tcx> {
QueryKeyStringBuilder { profiler, tcx, string_cache }
}
// The current implementation is rather crude. In the future it might be a
// good idea to base this on `ty::print` in order to get nicer and more
// efficient query keys.
fn def_id_to_string_id(&mut self, def_id: DefId) -> StringId {
if let Some(&string_id) = self.string_cache.def_id_cache.get(&def_id) {
return string_id;
}
let def_key = self.tcx.def_key(def_id);
let (parent_string_id, start_index) = match def_key.parent {
Some(parent_index) => {
let parent_def_id = DefId { index: parent_index, krate: def_id.krate };
(self.def_id_to_string_id(parent_def_id), 0)
}
None => (StringId::INVALID, 2),
};
let dis_buffer = &mut [0u8; 16];
let name;
let dis;
let end_index;
match def_key.disambiguated_data.data {
DefPathData::CrateRoot => {
name = self.tcx.original_crate_name(def_id.krate).as_str();
dis = "";
end_index = 3;
}
other => {
name = other.as_symbol().as_str();
if def_key.disambiguated_data.disambiguator == 0 {
dis = "";
end_index = 3;
} else {
write!(&mut dis_buffer[..], "[{}]", def_key.disambiguated_data.disambiguator)
.unwrap();
let end_of_dis = dis_buffer.iter().position(|&c| c == b']').unwrap();
dis = std::str::from_utf8(&dis_buffer[..end_of_dis + 1]).unwrap();
end_index = 4;
}
}
}
let components = [
StringComponent::Ref(parent_string_id),
StringComponent::Value("::"),
StringComponent::Value(&name[..]),
StringComponent::Value(dis),
];
let string_id = self.profiler.alloc_string(&components[start_index..end_index]);
self.string_cache.def_id_cache.insert(def_id, string_id);
string_id
}
}
pub trait IntoSelfProfilingString {
fn to_self_profile_string(&self, builder: &mut QueryKeyStringBuilder<'_, '_, '_>) -> StringId;
}
// The default implementation of `IntoSelfProfilingString` just uses `Debug`
// which is slow and causes lots of duplication of string data.
// The specialized impls below take care of making the `DefId` case more
// efficient.
impl<T: Debug> IntoSelfProfilingString for T {
default fn to_self_profile_string(
&self,
builder: &mut QueryKeyStringBuilder<'_, '_, '_>,
) -> StringId {
let s = format!("{:?}", self);
builder.profiler.alloc_string(&s[..])
}
}
impl IntoSelfProfilingString for DefId {
fn to_self_profile_string(&self, builder: &mut QueryKeyStringBuilder<'_, '_, '_>) -> StringId {
builder.def_id_to_string_id(*self)
}
}
impl IntoSelfProfilingString for CrateNum {
fn to_self_profile_string(&self, builder: &mut QueryKeyStringBuilder<'_, '_, '_>) -> StringId {
builder.def_id_to_string_id(DefId { krate: *self, index: CRATE_DEF_INDEX })
}
}
impl IntoSelfProfilingString for DefIndex {
fn to_self_profile_string(&self, builder: &mut QueryKeyStringBuilder<'_, '_, '_>) -> StringId {
builder.def_id_to_string_id(DefId { krate: LOCAL_CRATE, index: *self })
}
}
impl<T0, T1> IntoSelfProfilingString for (T0, T1)
where
T0: IntoSelfProfilingString + Debug,
T1: IntoSelfProfilingString + Debug,
{
default fn to_self_profile_string(
&self,
builder: &mut QueryKeyStringBuilder<'_, '_, '_>,
) -> StringId {
let val0 = self.0.to_self_profile_string(builder);
let val1 = self.1.to_self_profile_string(builder);
let components = &[
StringComponent::Value("("),
StringComponent::Ref(val0),
StringComponent::Value(","),
StringComponent::Ref(val1),
StringComponent::Value(")"),
];
builder.profiler.alloc_string(components)
}
}
/// Allocate the self-profiling query strings for a single query cache. This
/// method is called from `alloc_self_profile_query_strings` which knows all
/// the queries via macro magic.
pub(super) fn alloc_self_profile_query_strings_for_query_cache<'tcx, Q>(
tcx: TyCtxt<'tcx>,
query_name: &'static str,
query_cache: &Sharded<QueryCache<'tcx, Q>>,
string_cache: &mut QueryKeyStringCache,
) where
Q: QueryConfig<'tcx>,
{
tcx.prof.with_profiler(|profiler| {
let event_id_builder = profiler.event_id_builder();
// Walk the entire query cache and allocate the appropriate
// string representations. Each cache entry is uniquely
// identified by its dep_node_index.
if profiler.query_key_recording_enabled() {
let mut query_string_builder = QueryKeyStringBuilder::new(profiler, tcx, string_cache);
let query_name = profiler.get_or_alloc_cached_string(query_name);
// Since building the string representation of query keys might
// need to invoke queries itself, we cannot keep the query caches
// locked while doing so. Instead we copy out the
// `(query_key, dep_node_index)` pairs and release the lock again.
let query_keys_and_indices = {
let shards = query_cache.lock_shards();
let len = shards.iter().map(|shard| shard.results.len()).sum();
let mut query_keys_and_indices = Vec::with_capacity(len);
for shard in &shards {
query_keys_and_indices.extend(
shard.results.iter().map(|(q_key, q_val)| (q_key.clone(), q_val.index)),
);
}
query_keys_and_indices
};
// Now actually allocate the strings. If allocating the strings
// generates new entries in the query cache, we'll miss them but
// we don't actually care.
for (query_key, dep_node_index) in query_keys_and_indices {
// Translate the DepNodeIndex into a QueryInvocationId
let query_invocation_id = dep_node_index.into();
// Create the string version of the query-key
let query_key = query_key.to_self_profile_string(&mut query_string_builder);
let event_id = event_id_builder.from_label_and_arg(query_name, query_key);
// Doing this in bulk might be a good idea:
profiler.map_query_invocation_id_to_string(
query_invocation_id,
event_id.to_string_id(),
);
}
} else {
// In this branch we don't allocate query keys
let query_name = profiler.get_or_alloc_cached_string(query_name);
let event_id = event_id_builder.from_label(query_name).to_string_id();
let shards = query_cache.lock_shards();
for shard in shards.iter() {
let query_invocation_ids = shard
.results
.values()
.map(|v| v.index)
.map(|dep_node_index| dep_node_index.into());
profiler
.bulk_map_query_invocation_id_to_single_string(query_invocation_ids, event_id);
}
}
});
}

View file

@ -85,7 +85,7 @@ pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicat
}
op => bug!(
"comparison_op_to_icmp_predicate: expected comparison operator, \
found {:?}",
found {:?}",
op
),
}
@ -102,7 +102,7 @@ pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
op => {
bug!(
"comparison_op_to_fcmp_predicate: expected comparison operator, \
found {:?}",
found {:?}",
op
);
}
@ -519,7 +519,7 @@ pub fn codegen_crate<B: ExtraBackendMethods>(
ongoing_codegen.codegen_finished(tcx);
assert_and_save_dep_graph(tcx);
finalize_tcx(tcx);
ongoing_codegen.check_for_errors(tcx.sess);
@ -660,7 +660,8 @@ pub fn codegen_crate<B: ExtraBackendMethods>(
ongoing_codegen.check_for_errors(tcx.sess);
assert_and_save_dep_graph(tcx);
finalize_tcx(tcx);
ongoing_codegen.into_inner()
}
@ -711,10 +712,16 @@ impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
}
}
fn assert_and_save_dep_graph(tcx: TyCtxt<'_>) {
fn finalize_tcx(tcx: TyCtxt<'_>) {
tcx.sess.time("assert_dep_graph", || ::rustc_incremental::assert_dep_graph(tcx));
tcx.sess.time("serialize_dep_graph", || ::rustc_incremental::save_dep_graph(tcx));
// We assume that no queries are run past here. If there are new queries
// after this point, they'll show up as "<unknown>" in self-profiling data.
{
let _prof_timer = tcx.prof.generic_activity("self_profile_alloc_query_strings");
tcx.alloc_self_profile_query_strings();
}
}
impl CrateInfo {

View file

@ -26,7 +26,7 @@ rustc-hash = "1.0.1"
smallvec = { version = "1.0", features = ["union", "may_dangle"] }
rustc_index = { path = "../librustc_index", package = "rustc_index" }
bitflags = "1.2.1"
measureme = "0.5"
measureme = "0.7.1"
[dependencies.parking_lot]
version = "0.9"

View file

@ -1,6 +1,90 @@
//! # Rust Compiler Self-Profiling
//!
//! This module implements the basic framework for the compiler's self-
//! profiling support. It provides the `SelfProfiler` type which enables
//! recording "events". An event is something that starts and ends at a given
//! point in time and has an ID and a kind attached to it. This allows for
//! tracing the compiler's activity.
//!
//! Internally this module uses the custom tailored [measureme][mm] crate for
//! efficiently recording events to disk in a compact format that can be
//! post-processed and analyzed by the suite of tools in the `measureme`
//! project. The highest priority for the tracing framework is on incurring as
//! little overhead as possible.
//!
//!
//! ## Event Overview
//!
//! Events have a few properties:
//!
//! - The `event_kind` designates the broad category of an event (e.g. does it
//! correspond to the execution of a query provider or to loading something
//! from the incr. comp. on-disk cache, etc).
//! - The `event_id` designates the query invocation or function call it
//! corresponds to, possibly including the query key or function arguments.
//! - Each event stores the ID of the thread it was recorded on.
//! - The timestamp stores beginning and end of the event, or the single point
//! in time it occurred at for "instant" events.
//!
//!
//! ## Event Filtering
//!
//! Event generation can be filtered by event kind. Recording all possible
//! events generates a lot of data, much of which is not needed for most kinds
//! of analysis. So, in order to keep overhead as low as possible for a given
//! use case, the `SelfProfiler` will only record the kinds of events that
//! pass the filter specified as a command line argument to the compiler.
//!
//!
//! ## `event_id` Assignment
//!
//! As far as `measureme` is concerned, `event_id`s are just strings. However,
//! it would incur too much overhead to generate and persist each `event_id`
//! string at the point where the event is recorded. In order to make this more
//! efficient `measureme` has two features:
//!
//! - Strings can share their content, so that re-occurring parts don't have to
//! be copied over and over again. One allocates a string in `measureme` and
//! gets back a `StringId`. This `StringId` is then used to refer to that
//! string. `measureme` strings are actually DAGs of string components so that
//! arbitrary sharing of substrings can be done efficiently. This is useful
//! because `event_id`s contain lots of redundant text like query names or
//! def-path components.
//!
//! - `StringId`s can be "virtual" which means that the client picks a numeric
//! ID according to some application-specific scheme and can later make that
//! ID be mapped to an actual string. This is used to cheaply generate
//! `event_id`s while the events actually occur, causing little timing
//! distortion, and then later map those `StringId`s, in bulk, to actual
//! `event_id` strings. This way the largest part of the tracing overhead is
//! localized to one contiguous chunk of time.
//!
//! How are these `event_id`s generated in the compiler? For things that occur
//! infrequently (e.g. "generic activities"), we just allocate the string the
//! first time it is used and then keep the `StringId` in a hash table. This
//! is implemented in `SelfProfiler::get_or_alloc_cached_string()`.
//!
//! For queries it gets more interesting: First we need a unique numeric ID for
//! each query invocation (the `QueryInvocationId`). This ID is used as the
//! virtual `StringId` we use as `event_id` for a given event. This ID has to
//! be available both when the query is executed and later, together with the
//! query key, when we allocate the actual `event_id` strings in bulk.
//!
//! We could make the compiler generate and keep track of such an ID for each
//! query invocation but luckily we already have something that fits all the
//! the requirements: the query's `DepNodeIndex`. So we use the numeric value
//! of the `DepNodeIndex` as `event_id` when recording the event and then,
//! just before the query context is dropped, we walk the entire query cache
//! (which stores the `DepNodeIndex` along with the query key for each
//! invocation) and allocate the corresponding strings together with a mapping
//! for `DepNodeIndex as StringId`.
//!
//! [mm]: https://github.com/rust-lang/measureme/
use crate::fx::FxHashMap;
use std::error::Error;
use std::fs;
use std::mem::{self, Discriminant};
use std::path::Path;
use std::process;
use std::sync::Arc;
@ -8,7 +92,8 @@ use std::thread::ThreadId;
use std::time::{Duration, Instant};
use std::u32;
use measureme::StringId;
use measureme::{EventId, EventIdBuilder, SerializableString, StringId};
use parking_lot::RwLock;
/// MmapSerializatioSink is faster on macOS and Linux
/// but FileSerializationSink is faster on Windows
@ -19,11 +104,6 @@ type SerializationSink = measureme::FileSerializationSink;
type Profiler = measureme::Profiler<SerializationSink>;
pub trait QueryName: Sized + Copy {
fn discriminant(self) -> Discriminant<Self>;
fn as_str(self) -> &'static str;
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub enum ProfileCategory {
Parsing,
@ -43,6 +123,8 @@ bitflags::bitflags! {
const QUERY_BLOCKED = 1 << 3;
const INCR_CACHE_LOADS = 1 << 4;
const QUERY_KEYS = 1 << 5;
const DEFAULT = Self::GENERIC_ACTIVITIES.bits |
Self::QUERY_PROVIDERS.bits |
Self::QUERY_BLOCKED.bits |
@ -62,12 +144,16 @@ const EVENT_FILTERS_BY_NAME: &[(&str, EventFilter)] = &[
("query-cache-hit", EventFilter::QUERY_CACHE_HITS),
("query-blocked", EventFilter::QUERY_BLOCKED),
("incr-cache-load", EventFilter::INCR_CACHE_LOADS),
("query-keys", EventFilter::QUERY_KEYS),
];
fn thread_id_to_u32(tid: ThreadId) -> u32 {
unsafe { mem::transmute::<ThreadId, u64>(tid) as u32 }
unsafe { std::mem::transmute::<ThreadId, u64>(tid) as u32 }
}
/// Something that uniquely identifies a query invocation.
pub struct QueryInvocationId(pub u32);
/// A reference to the SelfProfiler. It can be cloned and sent across thread
/// boundaries at will.
#[derive(Clone)]
@ -138,7 +224,10 @@ impl SelfProfilerRef {
/// a measureme event, "verbose" generic activities also print a timing entry to
/// stdout if the compiler is invoked with -Ztime or -Ztime-passes.
#[inline(always)]
pub fn verbose_generic_activity<'a>(&'a self, event_id: &'a str) -> VerboseTimingGuard<'a> {
pub fn verbose_generic_activity<'a>(
&'a self,
event_id: &'static str,
) -> VerboseTimingGuard<'a> {
VerboseTimingGuard::start(
event_id,
self.print_verbose_generic_activities,
@ -167,9 +256,10 @@ impl SelfProfilerRef {
/// Start profiling a generic activity. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn generic_activity(&self, event_id: &str) -> TimingGuard<'_> {
pub fn generic_activity(&self, event_id: &'static str) -> TimingGuard<'_> {
self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| {
let event_id = profiler.profiler.alloc_string(event_id);
let event_id = profiler.get_or_alloc_cached_string(event_id);
let event_id = EventId::from_label(event_id);
TimingGuard::start(profiler, profiler.generic_activity_event_kind, event_id)
})
}
@ -177,19 +267,18 @@ impl SelfProfilerRef {
/// Start profiling a query provider. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn query_provider(&self, query_name: impl QueryName) -> TimingGuard<'_> {
pub fn query_provider(&self) -> TimingGuard<'_> {
self.exec(EventFilter::QUERY_PROVIDERS, |profiler| {
let event_id = SelfProfiler::get_query_name_string_id(query_name);
TimingGuard::start(profiler, profiler.query_event_kind, event_id)
TimingGuard::start(profiler, profiler.query_event_kind, EventId::INVALID)
})
}
/// Record a query in-memory cache hit.
#[inline(always)]
pub fn query_cache_hit(&self, query_name: impl QueryName) {
pub fn query_cache_hit(&self, query_invocation_id: QueryInvocationId) {
self.instant_query_event(
|profiler| profiler.query_cache_hit_event_kind,
query_name,
query_invocation_id,
EventFilter::QUERY_CACHE_HITS,
);
}
@ -198,10 +287,9 @@ impl SelfProfilerRef {
/// Profiling continues until the TimingGuard returned from this call is
/// dropped.
#[inline(always)]
pub fn query_blocked(&self, query_name: impl QueryName) -> TimingGuard<'_> {
pub fn query_blocked(&self) -> TimingGuard<'_> {
self.exec(EventFilter::QUERY_BLOCKED, |profiler| {
let event_id = SelfProfiler::get_query_name_string_id(query_name);
TimingGuard::start(profiler, profiler.query_blocked_event_kind, event_id)
TimingGuard::start(profiler, profiler.query_blocked_event_kind, EventId::INVALID)
})
}
@ -209,10 +297,13 @@ impl SelfProfilerRef {
/// incremental compilation on-disk cache. Profiling continues until the
/// TimingGuard returned from this call is dropped.
#[inline(always)]
pub fn incr_cache_loading(&self, query_name: impl QueryName) -> TimingGuard<'_> {
pub fn incr_cache_loading(&self) -> TimingGuard<'_> {
self.exec(EventFilter::INCR_CACHE_LOADS, |profiler| {
let event_id = SelfProfiler::get_query_name_string_id(query_name);
TimingGuard::start(profiler, profiler.incremental_load_result_event_kind, event_id)
TimingGuard::start(
profiler,
profiler.incremental_load_result_event_kind,
EventId::INVALID,
)
})
}
@ -220,29 +311,41 @@ impl SelfProfilerRef {
fn instant_query_event(
&self,
event_kind: fn(&SelfProfiler) -> StringId,
query_name: impl QueryName,
query_invocation_id: QueryInvocationId,
event_filter: EventFilter,
) {
drop(self.exec(event_filter, |profiler| {
let event_id = SelfProfiler::get_query_name_string_id(query_name);
let event_id = StringId::new_virtual(query_invocation_id.0);
let thread_id = thread_id_to_u32(std::thread::current().id());
profiler.profiler.record_instant_event(event_kind(profiler), event_id, thread_id);
profiler.profiler.record_instant_event(
event_kind(profiler),
EventId::from_virtual(event_id),
thread_id,
);
TimingGuard::none()
}));
}
pub fn register_queries(&self, f: impl FnOnce(&SelfProfiler)) {
pub fn with_profiler(&self, f: impl FnOnce(&SelfProfiler)) {
if let Some(profiler) = &self.profiler {
f(&profiler)
}
}
#[inline]
pub fn enabled(&self) -> bool {
self.profiler.is_some()
}
}
pub struct SelfProfiler {
profiler: Profiler,
event_filter_mask: EventFilter,
string_cache: RwLock<FxHashMap<&'static str, StringId>>,
query_event_kind: StringId,
generic_activity_event_kind: StringId,
incremental_load_result_event_kind: StringId,
@ -305,6 +408,7 @@ impl SelfProfiler {
Ok(SelfProfiler {
profiler,
event_filter_mask,
string_cache: RwLock::new(FxHashMap::default()),
query_event_kind,
generic_activity_event_kind,
incremental_load_result_event_kind,
@ -313,16 +417,51 @@ impl SelfProfiler {
})
}
fn get_query_name_string_id(query_name: impl QueryName) -> StringId {
let discriminant =
unsafe { mem::transmute::<Discriminant<_>, u64>(query_name.discriminant()) };
StringId::reserved(discriminant as u32)
/// Allocates a new string in the profiling data. Does not do any caching
/// or deduplication.
pub fn alloc_string<STR: SerializableString + ?Sized>(&self, s: &STR) -> StringId {
self.profiler.alloc_string(s)
}
pub fn register_query_name(&self, query_name: impl QueryName) {
let id = SelfProfiler::get_query_name_string_id(query_name);
self.profiler.alloc_string_with_reserved_id(id, query_name.as_str());
/// Gets a `StringId` for the given string. This method makes sure that
/// any strings going through it will only be allocated once in the
/// profiling data.
pub fn get_or_alloc_cached_string(&self, s: &'static str) -> StringId {
// Only acquire a read-lock first since we assume that the string is
// already present in the common case.
{
let string_cache = self.string_cache.read();
if let Some(&id) = string_cache.get(s) {
return id;
}
}
let mut string_cache = self.string_cache.write();
// Check if the string has already been added in the small time window
// between dropping the read lock and acquiring the write lock.
*string_cache.entry(s).or_insert_with(|| self.profiler.alloc_string(s))
}
pub fn map_query_invocation_id_to_string(&self, from: QueryInvocationId, to: StringId) {
let from = StringId::new_virtual(from.0);
self.profiler.map_virtual_to_concrete_string(from, to);
}
pub fn bulk_map_query_invocation_id_to_single_string<I>(&self, from: I, to: StringId)
where
I: Iterator<Item = QueryInvocationId> + ExactSizeIterator,
{
let from = from.map(|qid| StringId::new_virtual(qid.0));
self.profiler.bulk_map_virtual_to_single_concrete_string(from, to);
}
pub fn query_key_recording_enabled(&self) -> bool {
self.event_filter_mask.contains(EventFilter::QUERY_KEYS)
}
pub fn event_id_builder(&self) -> EventIdBuilder<'_, SerializationSink> {
EventIdBuilder::new(&self.profiler)
}
}
@ -334,7 +473,7 @@ impl<'a> TimingGuard<'a> {
pub fn start(
profiler: &'a SelfProfiler,
event_kind: StringId,
event_id: StringId,
event_id: EventId,
) -> TimingGuard<'a> {
let thread_id = thread_id_to_u32(std::thread::current().id());
let raw_profiler = &profiler.profiler;
@ -343,6 +482,15 @@ impl<'a> TimingGuard<'a> {
TimingGuard(Some(timing_guard))
}
#[inline]
pub fn finish_with_query_invocation_id(self, query_invocation_id: QueryInvocationId) {
if let Some(guard) = self.0 {
let event_id = StringId::new_virtual(query_invocation_id.0);
let event_id = EventId::from_virtual(event_id);
guard.finish_with_override_event_id(event_id);
}
}
#[inline]
pub fn none() -> TimingGuard<'a> {
TimingGuard(None)
@ -444,8 +592,8 @@ fn get_resident() -> Option<usize> {
cb: DWORD,
) -> BOOL;
}
let mut pmc: PROCESS_MEMORY_COUNTERS = unsafe { mem::zeroed() };
pmc.cb = mem::size_of_val(&pmc) as DWORD;
let mut pmc: PROCESS_MEMORY_COUNTERS = unsafe { std::mem::zeroed() };
pmc.cb = std::mem::size_of_val(&pmc) as DWORD;
match unsafe { GetProcessMemoryInfo(GetCurrentProcess(), &mut pmc, pmc.cb) } {
0 => None,
_ => Some(pmc.WorkingSetSize as usize),

View file

@ -71,10 +71,6 @@ pub fn create_session(
lint_caps,
);
sess.prof.register_queries(|profiler| {
rustc::ty::query::QueryName::register_with_profiler(&profiler);
});
let codegen_backend = get_codegen_backend(&sess);
let mut cfg = config::build_configuration(&sess, config::to_crate_config(cfg));