1
Fork 0

Match constructor first in Constructor methods

This makes it easier to add new non-standard constructors, and this also
ensures that we don't forget cases when adding a new constructor.
This commit is contained in:
Nadrieril 2019-11-12 10:36:56 +00:00
parent e3d998492a
commit eb99c73e04

View file

@ -781,65 +781,68 @@ impl<'tcx> Constructor<'tcx> {
ty: Ty<'tcx>, ty: Ty<'tcx>,
) -> Vec<Pat<'tcx>> { ) -> Vec<Pat<'tcx>> {
debug!("wildcard_subpatterns({:#?}, {:?})", self, ty); debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => { match self {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect() Single | Variant(_) => match ty.kind {
} ty::Tuple(ref fs) => {
ty::Slice(ty) | ty::Array(ty, _) => match *self { fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
FixedLenSlice(length) => (0..length).map(|_| Pat::wildcard_from_ty(ty)).collect(),
VarLenSlice(prefix, suffix) => {
(0..prefix + suffix).map(|_| Pat::wildcard_from_ty(ty)).collect()
} }
ConstantValue(..) => vec![], ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
_ => bug!("bad slice pattern {:?} {:?}", self, ty), ty::Adt(adt, substs) => {
}, if adt.is_box() {
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)], // Use T as the sub pattern type of Box<T>.
ty::Adt(adt, substs) => { vec![Pat::wildcard_from_ty(substs.type_at(0))]
if adt.is_box() { } else {
// Use T as the sub pattern type of Box<T>. let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
vec![Pat::wildcard_from_ty(substs.type_at(0))] let is_non_exhaustive =
} else { variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)]; variant
let is_non_exhaustive = .fields
variant.is_field_list_non_exhaustive() && !cx.is_local(ty); .iter()
variant .map(|field| {
.fields let is_visible = adt.is_enum()
.iter() || field.vis.is_accessible_from(cx.module, cx.tcx);
.map(|field| { let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
let is_visible = match (is_visible, is_non_exhaustive, is_uninhabited) {
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx); // Treat all uninhabited types in non-exhaustive variants as
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs)); // `TyErr`.
match (is_visible, is_non_exhaustive, is_uninhabited) { (_, true, true) => cx.tcx.types.err,
// Treat all uninhabited types in non-exhaustive variants as // Treat all non-visible fields as `TyErr`. They can't appear
// `TyErr`. // in any other pattern from this match (because they are
(_, true, true) => cx.tcx.types.err, // private), so their type does not matter - but we don't want
// Treat all non-visible fields as `TyErr`. They can't appear in // to know they are uninhabited.
// any other pattern from this match (because they are private), so (false, ..) => cx.tcx.types.err,
// their type does not matter - but we don't want to know they are (true, ..) => {
// uninhabited. let ty = field.ty(cx.tcx, substs);
(false, ..) => cx.tcx.types.err, match ty.kind {
(true, ..) => { // If the field type returned is an array of an unknown
let ty = field.ty(cx.tcx, substs); // size return an TyErr.
match ty.kind { ty::Array(_, len)
// If the field type returned is an array of an unknown if len
// size return an TyErr. .try_eval_usize(cx.tcx, cx.param_env)
ty::Array(_, len) .is_none() =>
if len {
.try_eval_usize(cx.tcx, cx.param_env) cx.tcx.types.err
.is_none() => }
{ _ => ty,
cx.tcx.types.err
} }
_ => ty,
} }
} }
} })
}) .map(Pat::wildcard_from_ty)
.map(Pat::wildcard_from_ty) .collect()
.collect() }
} }
} _ => vec![],
_ => vec![], },
FixedLenSlice(_) | VarLenSlice(..) => match ty.kind {
ty::Slice(ty) | ty::Array(ty, _) => {
let arity = self.arity(cx, ty);
(0..arity).map(|_| Pat::wildcard_from_ty(ty)).collect()
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ConstantValue(..) | ConstantRange(..) => vec![],
} }
} }
@ -850,19 +853,19 @@ impl<'tcx> Constructor<'tcx> {
/// A struct pattern's arity is the number of fields it contains, etc. /// A struct pattern's arity is the number of fields it contains, etc.
fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 { fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
debug!("Constructor::arity({:#?}, {:?})", self, ty); debug!("Constructor::arity({:#?}, {:?})", self, ty);
match ty.kind { match self {
ty::Tuple(ref fs) => fs.len() as u64, Single | Variant(_) => match ty.kind {
ty::Slice(..) | ty::Array(..) => match *self { ty::Tuple(ref fs) => fs.len() as u64,
FixedLenSlice(length) => length, ty::Slice(..) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
VarLenSlice(prefix, suffix) => prefix + suffix, ty::Ref(..) => 1,
ConstantValue(..) => 0, ty::Adt(adt, _) => {
_ => bug!("bad slice pattern {:?} {:?}", self, ty), adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
}
_ => 0,
}, },
ty::Ref(..) => 1, FixedLenSlice(length) => *length,
ty::Adt(adt, _) => { VarLenSlice(prefix, suffix) => prefix + suffix,
adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64 ConstantValue(..) | ConstantRange(..) => 0,
}
_ => 0,
} }
} }
@ -886,53 +889,49 @@ impl<'tcx> Constructor<'tcx> {
pats: impl IntoIterator<Item = Pat<'tcx>>, pats: impl IntoIterator<Item = Pat<'tcx>>,
) -> Pat<'tcx> { ) -> Pat<'tcx> {
let mut subpatterns = pats.into_iter(); let mut subpatterns = pats.into_iter();
let pat = match ty.kind {
ty::Adt(..) | ty::Tuple(..) => {
let subpatterns = subpatterns
.enumerate()
.map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
.collect();
if let ty::Adt(adt, substs) = ty.kind { let pat = match self {
if adt.is_enum() { Single | Variant(_) => match ty.kind {
PatKind::Variant { ty::Adt(..) | ty::Tuple(..) => {
adt_def: adt, let subpatterns = subpatterns
substs, .enumerate()
variant_index: self.variant_index_for_adt(cx, adt), .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
subpatterns, .collect();
if let ty::Adt(adt, substs) = ty.kind {
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
subpatterns,
}
} else {
PatKind::Leaf { subpatterns }
} }
} else { } else {
PatKind::Leaf { subpatterns } PatKind::Leaf { subpatterns }
} }
} else {
PatKind::Leaf { subpatterns }
} }
} ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => match self {
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
VarLenSlice(prefix_len, _suffix_len) => {
let prefix = subpatterns.by_ref().take(*prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
_ => match *self {
ConstantValue(value, _) => PatKind::Constant { value },
ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
_ => PatKind::Wild, _ => PatKind::Wild,
}, },
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
&VarLenSlice(prefix_len, _) => {
let prefix = subpatterns.by_ref().take(prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
&ConstantValue(value, _) => PatKind::Constant { value },
&ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
}; };
Pat { ty, span: DUMMY_SP, kind: Box::new(pat) } Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }