put code in a more logical order
This commit is contained in:
parent
5bef23d0fa
commit
e950f11019
1 changed files with 479 additions and 474 deletions
|
@ -495,6 +495,485 @@ impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
|||
}
|
||||
}
|
||||
|
||||
/// "Relocations" stores the provenance information of pointers stored in memory.
|
||||
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
|
||||
pub struct Relocations<Tag = AllocId>(SortedMap<Size, Tag>);
|
||||
|
||||
impl<Tag> Relocations<Tag> {
|
||||
pub fn new() -> Self {
|
||||
Relocations(SortedMap::new())
|
||||
}
|
||||
|
||||
// The caller must guarantee that the given relocations are already sorted
|
||||
// by address and contain no duplicates.
|
||||
pub fn from_presorted(r: Vec<(Size, Tag)>) -> Self {
|
||||
Relocations(SortedMap::from_presorted_elements(r))
|
||||
}
|
||||
}
|
||||
|
||||
impl<Tag> Deref for Relocations<Tag> {
|
||||
type Target = SortedMap<Size, Tag>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// A partial, owned list of relocations to transfer into another allocation.
|
||||
pub struct AllocationRelocations<Tag> {
|
||||
relative_relocations: Vec<(Size, Tag)>,
|
||||
}
|
||||
|
||||
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
pub fn prepare_relocation_copy(
|
||||
&self,
|
||||
cx: &impl HasDataLayout,
|
||||
src: AllocRange,
|
||||
dest: Size,
|
||||
count: u64,
|
||||
) -> AllocationRelocations<Tag> {
|
||||
let relocations = self.get_relocations(cx, src);
|
||||
if relocations.is_empty() {
|
||||
return AllocationRelocations { relative_relocations: Vec::new() };
|
||||
}
|
||||
|
||||
let size = src.size;
|
||||
let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));
|
||||
|
||||
for i in 0..count {
|
||||
new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
|
||||
// compute offset for current repetition
|
||||
let dest_offset = dest + size * i; // `Size` operations
|
||||
(
|
||||
// shift offsets from source allocation to destination allocation
|
||||
(offset + dest_offset) - src.start, // `Size` operations
|
||||
reloc,
|
||||
)
|
||||
}));
|
||||
}
|
||||
|
||||
AllocationRelocations { relative_relocations: new_relocations }
|
||||
}
|
||||
|
||||
/// Applies a relocation copy.
|
||||
/// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
|
||||
/// to be clear of relocations.
|
||||
pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
|
||||
self.relocations.0.insert_presorted(relocations.relative_relocations);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Uninitialized byte tracking
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
type Block = u64;
|
||||
|
||||
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
|
||||
/// is initialized. If it is `false` the byte is uninitialized.
|
||||
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
|
||||
#[derive(HashStable)]
|
||||
pub struct InitMask {
|
||||
blocks: Vec<Block>,
|
||||
len: Size,
|
||||
}
|
||||
|
||||
impl InitMask {
|
||||
pub const BLOCK_SIZE: u64 = 64;
|
||||
|
||||
#[inline]
|
||||
fn bit_index(bits: Size) -> (usize, usize) {
|
||||
let bits = bits.bytes();
|
||||
let a = bits / InitMask::BLOCK_SIZE;
|
||||
let b = bits % InitMask::BLOCK_SIZE;
|
||||
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
|
||||
let block = block.try_into().ok().unwrap();
|
||||
let bit = bit.try_into().ok().unwrap();
|
||||
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
|
||||
}
|
||||
|
||||
pub fn new(size: Size, state: bool) -> Self {
|
||||
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
|
||||
m.grow(size, state);
|
||||
m
|
||||
}
|
||||
|
||||
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
|
||||
let len = self.len;
|
||||
if end > len {
|
||||
self.grow(end - len, new_state);
|
||||
}
|
||||
self.set_range_inbounds(start, end, new_state);
|
||||
}
|
||||
|
||||
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
|
||||
let (blocka, bita) = Self::bit_index(start);
|
||||
let (blockb, bitb) = Self::bit_index(end);
|
||||
if blocka == blockb {
|
||||
// First set all bits except the first `bita`,
|
||||
// then unset the last `64 - bitb` bits.
|
||||
let range = if bitb == 0 {
|
||||
u64::MAX << bita
|
||||
} else {
|
||||
(u64::MAX << bita) & (u64::MAX >> (64 - bitb))
|
||||
};
|
||||
if new_state {
|
||||
self.blocks[blocka] |= range;
|
||||
} else {
|
||||
self.blocks[blocka] &= !range;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// across block boundaries
|
||||
if new_state {
|
||||
// Set `bita..64` to `1`.
|
||||
self.blocks[blocka] |= u64::MAX << bita;
|
||||
// Set `0..bitb` to `1`.
|
||||
if bitb != 0 {
|
||||
self.blocks[blockb] |= u64::MAX >> (64 - bitb);
|
||||
}
|
||||
// Fill in all the other blocks (much faster than one bit at a time).
|
||||
for block in (blocka + 1)..blockb {
|
||||
self.blocks[block] = u64::MAX;
|
||||
}
|
||||
} else {
|
||||
// Set `bita..64` to `0`.
|
||||
self.blocks[blocka] &= !(u64::MAX << bita);
|
||||
// Set `0..bitb` to `0`.
|
||||
if bitb != 0 {
|
||||
self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
|
||||
}
|
||||
// Fill in all the other blocks (much faster than one bit at a time).
|
||||
for block in (blocka + 1)..blockb {
|
||||
self.blocks[block] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, i: Size) -> bool {
|
||||
let (block, bit) = Self::bit_index(i);
|
||||
(self.blocks[block] & (1 << bit)) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn set(&mut self, i: Size, new_state: bool) {
|
||||
let (block, bit) = Self::bit_index(i);
|
||||
self.set_bit(block, bit, new_state);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
|
||||
if new_state {
|
||||
self.blocks[block] |= 1 << bit;
|
||||
} else {
|
||||
self.blocks[block] &= !(1 << bit);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn grow(&mut self, amount: Size, new_state: bool) {
|
||||
if amount.bytes() == 0 {
|
||||
return;
|
||||
}
|
||||
let unused_trailing_bits =
|
||||
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
|
||||
if amount.bytes() > unused_trailing_bits {
|
||||
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
|
||||
self.blocks.extend(
|
||||
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
|
||||
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
|
||||
);
|
||||
}
|
||||
let start = self.len;
|
||||
self.len += amount;
|
||||
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
|
||||
}
|
||||
|
||||
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
|
||||
fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
|
||||
/// A fast implementation of `find_bit`,
|
||||
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
|
||||
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
|
||||
///
|
||||
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
|
||||
/// and with the least significant bit (and lowest block) first:
|
||||
///
|
||||
/// 00000000|00000000
|
||||
/// ^ ^ ^ ^
|
||||
/// index: 0 7 8 15
|
||||
///
|
||||
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
|
||||
fn find_bit_fast(
|
||||
init_mask: &InitMask,
|
||||
start: Size,
|
||||
end: Size,
|
||||
is_init: bool,
|
||||
) -> Option<Size> {
|
||||
/// Search one block, returning the index of the first bit equal to `is_init`.
|
||||
fn search_block(
|
||||
bits: Block,
|
||||
block: usize,
|
||||
start_bit: usize,
|
||||
is_init: bool,
|
||||
) -> Option<Size> {
|
||||
// For the following examples, assume this function was called with:
|
||||
// bits = 11011100
|
||||
// start_bit = 3
|
||||
// is_init = false
|
||||
// Note again that the least significant bit is written first,
|
||||
// which is backwards compared to how we normally write numbers.
|
||||
|
||||
// Invert bits so we're always looking for the first set bit.
|
||||
// ! 11011100
|
||||
// bits = 00100011
|
||||
let bits = if is_init { bits } else { !bits };
|
||||
// Mask off unused start bits.
|
||||
// 00100011
|
||||
// & 00011111
|
||||
// bits = 00000011
|
||||
let bits = bits & (!0 << start_bit);
|
||||
// Find set bit, if any.
|
||||
// bit = trailing_zeros(00000011)
|
||||
// bit = 6
|
||||
if bits == 0 {
|
||||
None
|
||||
} else {
|
||||
let bit = bits.trailing_zeros();
|
||||
Some(InitMask::size_from_bit_index(block, bit))
|
||||
}
|
||||
}
|
||||
|
||||
if start >= end {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Convert `start` and `end` to block indexes and bit indexes within each block.
|
||||
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
|
||||
//
|
||||
// For example:
|
||||
//
|
||||
// (a) 00000000|00000000 (b) 00000000|
|
||||
// ^~~~~~~~~~~^ ^~~~~~~~~^
|
||||
// start end start end
|
||||
//
|
||||
// In both cases, the block index of `end` is 1.
|
||||
// But we do want to search block 1 in (a), and we don't in (b).
|
||||
//
|
||||
// If we subtract 1 from both end positions to make them inclusive:
|
||||
//
|
||||
// (a) 00000000|00000000 (b) 00000000|
|
||||
// ^~~~~~~~~~^ ^~~~~~~^
|
||||
// start end_inclusive start end_inclusive
|
||||
//
|
||||
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
|
||||
// This provides the desired behavior of searching blocks 0 and 1 for (a),
|
||||
// and searching only block 0 for (b).
|
||||
let (start_block, start_bit) = InitMask::bit_index(start);
|
||||
let end_inclusive = Size::from_bytes(end.bytes() - 1);
|
||||
let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);
|
||||
|
||||
// Handle first block: need to skip `start_bit` bits.
|
||||
//
|
||||
// We need to handle the first block separately,
|
||||
// because there may be bits earlier in the block that should be ignored,
|
||||
// such as the bit marked (1) in this example:
|
||||
//
|
||||
// (1)
|
||||
// -|------
|
||||
// (c) 01000000|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
if let Some(i) =
|
||||
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
|
||||
{
|
||||
// If the range is less than a block, we may find a matching bit after `end`.
|
||||
//
|
||||
// For example, we shouldn't successfully find bit (2), because it's after `end`:
|
||||
//
|
||||
// (2)
|
||||
// -------|
|
||||
// (d) 00000001|00000000|00000001
|
||||
// ^~~~~^
|
||||
// start end
|
||||
//
|
||||
// An alternative would be to mask off end bits in the same way as we do for start bits,
|
||||
// but performing this check afterwards is faster and simpler to implement.
|
||||
if i < end {
|
||||
return Some(i);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle remaining blocks.
|
||||
//
|
||||
// We can skip over an entire block at once if it's all 0s (resp. 1s).
|
||||
// The block marked (3) in this example is the first block that will be handled by this loop,
|
||||
// and it will be skipped for that reason:
|
||||
//
|
||||
// (3)
|
||||
// --------
|
||||
// (e) 01000000|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
if start_block < end_block_inclusive {
|
||||
// This loop is written in a specific way for performance.
|
||||
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
|
||||
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
|
||||
// because both alternatives result in significantly worse codegen.
|
||||
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
|
||||
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
|
||||
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
|
||||
.iter()
|
||||
.zip(start_block + 1..)
|
||||
{
|
||||
if let Some(i) = search_block(bits, block, 0, is_init) {
|
||||
// If this is the last block, we may find a matching bit after `end`.
|
||||
//
|
||||
// For example, we shouldn't successfully find bit (4), because it's after `end`:
|
||||
//
|
||||
// (4)
|
||||
// -------|
|
||||
// (f) 00000001|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
//
|
||||
// As above with example (d), we could handle the end block separately and mask off end bits,
|
||||
// but unconditionally searching an entire block at once and performing this check afterwards
|
||||
// is faster and much simpler to implement.
|
||||
if i < end {
|
||||
return Some(i);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
#[cfg_attr(not(debug_assertions), allow(dead_code))]
|
||||
fn find_bit_slow(
|
||||
init_mask: &InitMask,
|
||||
start: Size,
|
||||
end: Size,
|
||||
is_init: bool,
|
||||
) -> Option<Size> {
|
||||
(start..end).find(|&i| init_mask.get(i) == is_init)
|
||||
}
|
||||
|
||||
let result = find_bit_fast(self, start, end, is_init);
|
||||
|
||||
debug_assert_eq!(
|
||||
result,
|
||||
find_bit_slow(self, start, end, is_init),
|
||||
"optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
|
||||
start,
|
||||
end,
|
||||
is_init,
|
||||
self
|
||||
);
|
||||
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
/// A contiguous chunk of initialized or uninitialized memory.
|
||||
pub enum InitChunk {
|
||||
Init(Range<Size>),
|
||||
Uninit(Range<Size>),
|
||||
}
|
||||
|
||||
impl InitChunk {
|
||||
#[inline]
|
||||
pub fn range(&self) -> Range<Size> {
|
||||
match self {
|
||||
Self::Init(r) => r.clone(),
|
||||
Self::Uninit(r) => r.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl InitMask {
|
||||
/// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
|
||||
///
|
||||
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
|
||||
/// indexes for the first contiguous span of the uninitialized access.
|
||||
#[inline]
|
||||
pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range<Size>> {
|
||||
if end > self.len {
|
||||
return Err(self.len..end);
|
||||
}
|
||||
|
||||
let uninit_start = self.find_bit(start, end, false);
|
||||
|
||||
match uninit_start {
|
||||
Some(uninit_start) => {
|
||||
let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
|
||||
Err(uninit_start..uninit_end)
|
||||
}
|
||||
None => Ok(()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
|
||||
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
|
||||
///
|
||||
/// The iterator guarantees the following:
|
||||
/// - Chunks are nonempty.
|
||||
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
|
||||
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
|
||||
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
|
||||
#[inline]
|
||||
pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> {
|
||||
assert!(end <= self.len);
|
||||
|
||||
let is_init = if start < end { self.get(start) } else { false };
|
||||
|
||||
InitChunkIter { init_mask: self, is_init, start, end }
|
||||
}
|
||||
}
|
||||
|
||||
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
|
||||
pub struct InitChunkIter<'a> {
|
||||
init_mask: &'a InitMask,
|
||||
/// Whether the next chunk we will return is initialized.
|
||||
/// If there are no more chunks, contains some arbitrary value.
|
||||
is_init: bool,
|
||||
/// The current byte index into `init_mask`.
|
||||
start: Size,
|
||||
/// The end byte index into `init_mask`.
|
||||
end: Size,
|
||||
}
|
||||
|
||||
impl<'a> Iterator for InitChunkIter<'a> {
|
||||
type Item = InitChunk;
|
||||
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.start >= self.end {
|
||||
return None;
|
||||
}
|
||||
|
||||
let end_of_chunk =
|
||||
self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
|
||||
let range = self.start..end_of_chunk;
|
||||
|
||||
let ret =
|
||||
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
|
||||
|
||||
self.is_init = !self.is_init;
|
||||
self.start = end_of_chunk;
|
||||
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
/// Uninitialized bytes.
|
||||
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
/// Checks whether the given range is entirely initialized.
|
||||
|
@ -610,477 +1089,3 @@ impl<Tag, Extra> Allocation<Tag, Extra> {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// "Relocations" stores the provenance information of pointers stored in memory.
|
||||
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
|
||||
pub struct Relocations<Tag = AllocId>(SortedMap<Size, Tag>);
|
||||
|
||||
impl<Tag> Relocations<Tag> {
|
||||
pub fn new() -> Self {
|
||||
Relocations(SortedMap::new())
|
||||
}
|
||||
|
||||
// The caller must guarantee that the given relocations are already sorted
|
||||
// by address and contain no duplicates.
|
||||
pub fn from_presorted(r: Vec<(Size, Tag)>) -> Self {
|
||||
Relocations(SortedMap::from_presorted_elements(r))
|
||||
}
|
||||
}
|
||||
|
||||
impl<Tag> Deref for Relocations<Tag> {
|
||||
type Target = SortedMap<Size, Tag>;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// A partial, owned list of relocations to transfer into another allocation.
|
||||
pub struct AllocationRelocations<Tag> {
|
||||
relative_relocations: Vec<(Size, Tag)>,
|
||||
}
|
||||
|
||||
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
pub fn prepare_relocation_copy(
|
||||
&self,
|
||||
cx: &impl HasDataLayout,
|
||||
src: AllocRange,
|
||||
dest: Size,
|
||||
count: u64,
|
||||
) -> AllocationRelocations<Tag> {
|
||||
let relocations = self.get_relocations(cx, src);
|
||||
if relocations.is_empty() {
|
||||
return AllocationRelocations { relative_relocations: Vec::new() };
|
||||
}
|
||||
|
||||
let size = src.size;
|
||||
let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));
|
||||
|
||||
for i in 0..count {
|
||||
new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
|
||||
// compute offset for current repetition
|
||||
let dest_offset = dest + size * i; // `Size` operations
|
||||
(
|
||||
// shift offsets from source allocation to destination allocation
|
||||
(offset + dest_offset) - src.start, // `Size` operations
|
||||
reloc,
|
||||
)
|
||||
}));
|
||||
}
|
||||
|
||||
AllocationRelocations { relative_relocations: new_relocations }
|
||||
}
|
||||
|
||||
/// Applies a relocation copy.
|
||||
/// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
|
||||
/// to be clear of relocations.
|
||||
pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
|
||||
self.relocations.0.insert_presorted(relocations.relative_relocations);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Uninitialized byte tracking
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
type Block = u64;
|
||||
|
||||
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
|
||||
/// is initialized. If it is `false` the byte is uninitialized.
|
||||
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
|
||||
#[derive(HashStable)]
|
||||
pub struct InitMask {
|
||||
blocks: Vec<Block>,
|
||||
len: Size,
|
||||
}
|
||||
|
||||
impl InitMask {
|
||||
pub const BLOCK_SIZE: u64 = 64;
|
||||
|
||||
pub fn new(size: Size, state: bool) -> Self {
|
||||
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
|
||||
m.grow(size, state);
|
||||
m
|
||||
}
|
||||
|
||||
/// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
|
||||
///
|
||||
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
|
||||
/// indexes for the first contiguous span of the uninitialized access.
|
||||
#[inline]
|
||||
pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range<Size>> {
|
||||
if end > self.len {
|
||||
return Err(self.len..end);
|
||||
}
|
||||
|
||||
let uninit_start = find_bit(self, start, end, false);
|
||||
|
||||
match uninit_start {
|
||||
Some(uninit_start) => {
|
||||
let uninit_end = find_bit(self, uninit_start, end, true).unwrap_or(end);
|
||||
Err(uninit_start..uninit_end)
|
||||
}
|
||||
None => Ok(()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
|
||||
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
|
||||
///
|
||||
/// The iterator guarantees the following:
|
||||
/// - Chunks are nonempty.
|
||||
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
|
||||
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
|
||||
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
|
||||
#[inline]
|
||||
pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> {
|
||||
InitChunkIter::new(self, start, end)
|
||||
}
|
||||
|
||||
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
|
||||
let len = self.len;
|
||||
if end > len {
|
||||
self.grow(end - len, new_state);
|
||||
}
|
||||
self.set_range_inbounds(start, end, new_state);
|
||||
}
|
||||
|
||||
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
|
||||
let (blocka, bita) = bit_index(start);
|
||||
let (blockb, bitb) = bit_index(end);
|
||||
if blocka == blockb {
|
||||
// First set all bits except the first `bita`,
|
||||
// then unset the last `64 - bitb` bits.
|
||||
let range = if bitb == 0 {
|
||||
u64::MAX << bita
|
||||
} else {
|
||||
(u64::MAX << bita) & (u64::MAX >> (64 - bitb))
|
||||
};
|
||||
if new_state {
|
||||
self.blocks[blocka] |= range;
|
||||
} else {
|
||||
self.blocks[blocka] &= !range;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// across block boundaries
|
||||
if new_state {
|
||||
// Set `bita..64` to `1`.
|
||||
self.blocks[blocka] |= u64::MAX << bita;
|
||||
// Set `0..bitb` to `1`.
|
||||
if bitb != 0 {
|
||||
self.blocks[blockb] |= u64::MAX >> (64 - bitb);
|
||||
}
|
||||
// Fill in all the other blocks (much faster than one bit at a time).
|
||||
for block in (blocka + 1)..blockb {
|
||||
self.blocks[block] = u64::MAX;
|
||||
}
|
||||
} else {
|
||||
// Set `bita..64` to `0`.
|
||||
self.blocks[blocka] &= !(u64::MAX << bita);
|
||||
// Set `0..bitb` to `0`.
|
||||
if bitb != 0 {
|
||||
self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
|
||||
}
|
||||
// Fill in all the other blocks (much faster than one bit at a time).
|
||||
for block in (blocka + 1)..blockb {
|
||||
self.blocks[block] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, i: Size) -> bool {
|
||||
let (block, bit) = bit_index(i);
|
||||
(self.blocks[block] & (1 << bit)) != 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn set(&mut self, i: Size, new_state: bool) {
|
||||
let (block, bit) = bit_index(i);
|
||||
self.set_bit(block, bit, new_state);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
|
||||
if new_state {
|
||||
self.blocks[block] |= 1 << bit;
|
||||
} else {
|
||||
self.blocks[block] &= !(1 << bit);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn grow(&mut self, amount: Size, new_state: bool) {
|
||||
if amount.bytes() == 0 {
|
||||
return;
|
||||
}
|
||||
let unused_trailing_bits =
|
||||
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
|
||||
if amount.bytes() > unused_trailing_bits {
|
||||
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
|
||||
self.blocks.extend(
|
||||
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
|
||||
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
|
||||
);
|
||||
}
|
||||
let start = self.len;
|
||||
self.len += amount;
|
||||
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
|
||||
}
|
||||
}
|
||||
|
||||
/// A contiguous chunk of initialized or uninitialized memory.
|
||||
pub enum InitChunk {
|
||||
Init(Range<Size>),
|
||||
Uninit(Range<Size>),
|
||||
}
|
||||
|
||||
impl InitChunk {
|
||||
#[inline]
|
||||
pub fn range(&self) -> Range<Size> {
|
||||
match self {
|
||||
Self::Init(r) => r.clone(),
|
||||
Self::Uninit(r) => r.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
|
||||
pub struct InitChunkIter<'a> {
|
||||
init_mask: &'a InitMask,
|
||||
/// Whether the next chunk we will return is initialized.
|
||||
is_init: bool,
|
||||
/// The current byte index into `init_mask`.
|
||||
start: Size,
|
||||
/// The end byte index into `init_mask`.
|
||||
end: Size,
|
||||
}
|
||||
|
||||
impl<'a> InitChunkIter<'a> {
|
||||
#[inline]
|
||||
fn new(init_mask: &'a InitMask, start: Size, end: Size) -> Self {
|
||||
assert!(start <= end);
|
||||
assert!(end <= init_mask.len);
|
||||
|
||||
let is_init = if start < end { init_mask.get(start) } else { false };
|
||||
|
||||
Self { init_mask, is_init, start, end }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterator for InitChunkIter<'a> {
|
||||
type Item = InitChunk;
|
||||
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.start >= self.end {
|
||||
return None;
|
||||
}
|
||||
|
||||
let end_of_chunk =
|
||||
find_bit(&self.init_mask, self.start, self.end, !self.is_init).unwrap_or(self.end);
|
||||
let range = self.start..end_of_chunk;
|
||||
|
||||
let ret =
|
||||
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
|
||||
|
||||
self.is_init = !self.is_init;
|
||||
self.start = end_of_chunk;
|
||||
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
|
||||
fn find_bit(init_mask: &InitMask, start: Size, end: Size, is_init: bool) -> Option<Size> {
|
||||
/// A fast implementation of `find_bit`,
|
||||
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
|
||||
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
|
||||
///
|
||||
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
|
||||
/// and with the least significant bit (and lowest block) first:
|
||||
///
|
||||
/// 00000000|00000000
|
||||
/// ^ ^ ^ ^
|
||||
/// index: 0 7 8 15
|
||||
///
|
||||
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
|
||||
fn find_bit_fast(init_mask: &InitMask, start: Size, end: Size, is_init: bool) -> Option<Size> {
|
||||
/// Search one block, returning the index of the first bit equal to `is_init`.
|
||||
fn search_block(
|
||||
bits: Block,
|
||||
block: usize,
|
||||
start_bit: usize,
|
||||
is_init: bool,
|
||||
) -> Option<Size> {
|
||||
// For the following examples, assume this function was called with:
|
||||
// bits = 11011100
|
||||
// start_bit = 3
|
||||
// is_init = false
|
||||
// Note again that the least significant bit is written first,
|
||||
// which is backwards compared to how we normally write numbers.
|
||||
|
||||
// Invert bits so we're always looking for the first set bit.
|
||||
// ! 11011100
|
||||
// bits = 00100011
|
||||
let bits = if is_init { bits } else { !bits };
|
||||
// Mask off unused start bits.
|
||||
// 00100011
|
||||
// & 00011111
|
||||
// bits = 00000011
|
||||
let bits = bits & (!0 << start_bit);
|
||||
// Find set bit, if any.
|
||||
// bit = trailing_zeros(00000011)
|
||||
// bit = 6
|
||||
if bits == 0 {
|
||||
None
|
||||
} else {
|
||||
let bit = bits.trailing_zeros();
|
||||
Some(size_from_bit_index(block, bit))
|
||||
}
|
||||
}
|
||||
|
||||
if start >= end {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Convert `start` and `end` to block indexes and bit indexes within each block.
|
||||
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
|
||||
//
|
||||
// For example:
|
||||
//
|
||||
// (a) 00000000|00000000 (b) 00000000|
|
||||
// ^~~~~~~~~~~^ ^~~~~~~~~^
|
||||
// start end start end
|
||||
//
|
||||
// In both cases, the block index of `end` is 1.
|
||||
// But we do want to search block 1 in (a), and we don't in (b).
|
||||
//
|
||||
// If we subtract 1 from both end positions to make them inclusive:
|
||||
//
|
||||
// (a) 00000000|00000000 (b) 00000000|
|
||||
// ^~~~~~~~~~^ ^~~~~~~^
|
||||
// start end_inclusive start end_inclusive
|
||||
//
|
||||
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
|
||||
// This provides the desired behavior of searching blocks 0 and 1 for (a),
|
||||
// and searching only block 0 for (b).
|
||||
let (start_block, start_bit) = bit_index(start);
|
||||
let end_inclusive = Size::from_bytes(end.bytes() - 1);
|
||||
let (end_block_inclusive, _) = bit_index(end_inclusive);
|
||||
|
||||
// Handle first block: need to skip `start_bit` bits.
|
||||
//
|
||||
// We need to handle the first block separately,
|
||||
// because there may be bits earlier in the block that should be ignored,
|
||||
// such as the bit marked (1) in this example:
|
||||
//
|
||||
// (1)
|
||||
// -|------
|
||||
// (c) 01000000|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
if let Some(i) =
|
||||
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
|
||||
{
|
||||
if i < end {
|
||||
return Some(i);
|
||||
} else {
|
||||
// If the range is less than a block, we may find a matching bit after `end`.
|
||||
//
|
||||
// For example, we shouldn't successfully find bit (2), because it's after `end`:
|
||||
//
|
||||
// (2)
|
||||
// -------|
|
||||
// (d) 00000001|00000000|00000001
|
||||
// ^~~~~^
|
||||
// start end
|
||||
//
|
||||
// An alternative would be to mask off end bits in the same way as we do for start bits,
|
||||
// but performing this check afterwards is faster and simpler to implement.
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle remaining blocks.
|
||||
//
|
||||
// We can skip over an entire block at once if it's all 0s (resp. 1s).
|
||||
// The block marked (3) in this example is the first block that will be handled by this loop,
|
||||
// and it will be skipped for that reason:
|
||||
//
|
||||
// (3)
|
||||
// --------
|
||||
// (e) 01000000|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
if start_block < end_block_inclusive {
|
||||
// This loop is written in a specific way for performance.
|
||||
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
|
||||
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
|
||||
// because both alternatives result in significantly worse codegen.
|
||||
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
|
||||
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
|
||||
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
|
||||
.iter()
|
||||
.zip(start_block + 1..)
|
||||
{
|
||||
if let Some(i) = search_block(bits, block, 0, is_init) {
|
||||
if i < end {
|
||||
return Some(i);
|
||||
} else {
|
||||
// If this is the last block, we may find a matching bit after `end`.
|
||||
//
|
||||
// For example, we shouldn't successfully find bit (4), because it's after `end`:
|
||||
//
|
||||
// (4)
|
||||
// -------|
|
||||
// (f) 00000001|00000000|00000001
|
||||
// ^~~~~~~~~~~~~~~~~~^
|
||||
// start end
|
||||
//
|
||||
// As above with example (d), we could handle the end block separately and mask off end bits,
|
||||
// but unconditionally searching an entire block at once and performing this check afterwards
|
||||
// is faster and much simpler to implement.
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
#[cfg_attr(not(debug_assertions), allow(dead_code))]
|
||||
fn find_bit_slow(init_mask: &InitMask, start: Size, end: Size, is_init: bool) -> Option<Size> {
|
||||
(start..end).find(|&i| init_mask.get(i) == is_init)
|
||||
}
|
||||
|
||||
let result = find_bit_fast(init_mask, start, end, is_init);
|
||||
|
||||
debug_assert_eq!(
|
||||
result,
|
||||
find_bit_slow(init_mask, start, end, is_init),
|
||||
"optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
|
||||
start,
|
||||
end,
|
||||
is_init,
|
||||
init_mask
|
||||
);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn bit_index(bits: Size) -> (usize, usize) {
|
||||
let bits = bits.bytes();
|
||||
let a = bits / InitMask::BLOCK_SIZE;
|
||||
let b = bits % InitMask::BLOCK_SIZE;
|
||||
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
|
||||
let block = block.try_into().ok().unwrap();
|
||||
let bit = bit.try_into().ok().unwrap();
|
||||
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue